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RODNEY 
GRAHAM 
DOWNEY: 
THE ROAD TO PARAMETERIZED 
COMPLEXITY AND BEYOND

Interview of Ingrid Daubechies  
by Y.K. Leong

Rodney Graham Downey: The Road to Parameterized 
Complexity and Beyond

Rodney Graham Downey has made fundamental and 
far-reaching contributions to mathematical logic, effective 
algebra and theoretical computer science.

Of Scottish descent4  Downey obtained his BSc from the 
University of Queensland in Australia and his PhD from 
Monash University. Subsequently, he taught briefly at the 
Chisholm Institute of Technology (now part of Monash), 
then National University of Singapore (NUS) and University 
of Illinois at Urbana-Champaign. He moved to Victoria 
University in Wellington in New Zealand in 1986 and 
was shortly promoted to Reader in 1991. He was given a 
personal chair in mathematics in 1995 and is reputed to be 
one of the top three computability theorists in the world.

Downey's research in the theory of computation, and 
complexity theory has led to deep contributions on the 
relationship between algebraic and descriptive complexity 
vs algorithmic complexity. Early in his career, he and 
his former colleague Michael Ralph Fellows did some 
ground-breaking and influential work in parameterized 
complexity. This was initially considered to be a peripheral 
area of classical and applied computability theory and 
complexity theory and is now a flourishing area of 
computer science with regular meetings at Schloss 

Dagstuhl – Leibniz Center for Informatics. This center 
is considered to be the informatics (computer science) 
equivalent of the Oberwolfach Research Institute for 
Mathematics in Germany. Characteristic of his style of 
research, Downey moves from one field to another at 
regular intervals and has also done important work in 
effective algebra, reverse mathematics and algorithmic 
information theory. His current research interest is in 
model theory and computability theory.

His research output totals more than 280 (single or 
joint author) research papers in leading journals and 
conference proceedings. He has written 5 books: 
Parameterized Complexity (with Michael Fellows), 

Algorithmic Randomness and Complexity (with Denis 
Hirschfeldt), Fundamentals of Parameterized Complexity 
(with Michael Fellows), Minimal Weak Truth Table Degrees 
and Computably Enumerable Turing Degrees (with Keng 
Meng Ng and Reed Solomon), and A Hierarchy of Turing 
Degrees: A Transfinite Hierarchy of Lowness Notions in 
the Computably Enumerable Degrees, Unifying Classes 
and Natural Definability (with Noam Greenberg). 

In addition, he has also co-authored and co-edited 14 
books that are special issues of journal publications, or 
proceedings of workshops and conferences, and has 
served on the editorial boards of leading journals in logic 

and computer science, notably Bulletin of Symbolic Logic, 
Journal of Symbolic Logic, Theory of Computing Systems, 
Archive for Mathematical Logic and Computability. He 
currently edits 5 journals.

Downey’s scientific contributions have been nationally 
recognized in New Zealand with numerous awards and 
honors, notably the Hamilton Award for Science, New 
Zealand Association of Scientists Research Medal for the 
best New Zealand based scientist under 40, Hector Medal 
(Royal Society of New Zealand), Fellowship of the Royal 
Society of New Zealand and the Rutherford Medal (the 
premier award of the New Zealand Royal Society worth 
$100,000).  

The international recognition of Downey’s work is clearly 
reflected by invitations to speak at the International 
Congress of Mathematicians, International Congress 
of Logic, Methodology and Philosophy of Science, 
and Association for Symbolic Logic (Gödel Lecture) 
and by his election as fellows of the following foreign 
scientific bodies: Institute of Combinatorics and its 
Applications, Association for Computing Machinery 
(becoming the second ACM Fellow in New Zealand), Isaac 
Newton Institute for Mathematical Sciences, American 
Mathematical Society, Australian Mathematical Society 
and Institute for Mathematical Sciences (NUS).

He has twice won the Shoenfield Prize (Association for 
Symbolic Logic) for articles on his work on randomness, 
and for his book on algorithmic randomness and 
complexity, Nerode Prize (European Association for 
Theoretical Computer Science) and Humboldt Research 
Prize Award (60,000 Euros).

Though his passion in mathematical research is all-
consuming, Downey has always been an avid sportsman. 
Besides having been, in his younger days, a volleyball 
state player, a rugby forward player at school, and a 
squash player of high standard, he is currently a keen 
tennis player while still maintaining his lifelong passion 
in surfing. Perhaps what is not so well-known is that he 
is heavily involved in Scottish country dancing in which 
he is a qualified teacher and choreographer with 5 books 
of dances.

Downey has a long association with the National 
University of Singapore (NUS), dating back to 1983-1985 
when he took up his first permanent academic post, 
as a lecturer at NUS. However, he left NUS for a short 
visiting position at the University of Illinois at Urbana-
Champaign and then moved to Victoria University of 
Wellington in New Zealand, which is geographically and 
culturally closest to his home country of Australia. In 
spite of the relative academic isolation of New Zealand 
during the pre-internet period, the move proved to 
be decisive – soon afterwards, he found in Michael 
Fellows a collaborator with whom he would make his 

first significant impact in complexity theory. From the 
beginning of his research career, he had already shown a 
restless streak in research collaboration. He would seek, 
on his own local as well as overseas grants to travel to 
the United States, especially to Cornell and Chicago. His 
gregarious nature soon established a routine of regular 
overseas visits to the United States, Europe and Singapore. 
Downey’s attachment to Singapore is evident from the 
fact that he visits Singapore very often, practically every 
year (before the recent pandemic). Since 1993 he has 
been invited to NUS and NTU (Nanyang Technological 
University) as a visiting professor and as a member and 
fellow of the Institute for Mathematical Sciences (IMS) 
a number of times. He has collaborated with faculty 
members of NUS and NTU such as Chi Tat Chong, Frank 
Stephan, Yue Yang, Guohua Wu and Keng Meng Ng. 

As a celebration of Downey’s research contributions, his 
friends and collaborators within Singapore and without 
organised a workshop “Aspects of Computation” 
on parametric complexity, algorithmic randomness, 
classical computability theory and computable structures 
and reverse mathematics at IMS from 21 August – 15 
September 2017. It was during his visit for this program 
that Y.K. Leong interviewed him on 12 September 2017. 
The following is an edited and enhanced version of the 
interview in which he traced the path he took from his 
early attraction to logic in high school in Queensland, 
Australia to the pinnacles of logic in the remote capital city 
of New Zealand. We also get a rare glimpse of the views 
of an unusually prolific mind on mathematical logic and 
theoretical computer science and of a not so glamorous 
side of mathematical research.

Acknowledgement. Y.K. Leong would like thank Von 
Ping Yap of the Department of Statistics and Applied 
Probability, National University of Singapore for preparing 
a raw draft of the transcript of the interview.

4  Actually, of mixed descent. It also includes English, Irish, Welsh, Nordic, and Chinese.

  IMPRINTS    I
In an autobiographical note, 
you have written that your 

interest in logic came in early during your high 
school years. Interest in logic at such an early 
age seems to be rather unusual for those who 
are gifted in mathematics. Most of them would 
be attracted to number theory, combinatorics, 
geometry and things of a more computationally 
concrete nature. In retrospect, do you see any 
indication in your early childhood of any 
tendency towards a logical or algorithmic 
attitude or approach in your thinking process?

  ROD G. DOWNEY    D I think it's hard to recall my 
ear ly  chi ldhood, to be 

honest. My parents were not well off and I know I went 
to 7 primary schools, so I guess I had “no fixed address” 
until grades 6 and 7, the last two years of primary 
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5 Paul C. Eklof and Edward R. Fisher, “The elementary theory of abelian groups”, Annals of Mathematical Logic 4 (1972) 115 – 171

school. I know at primary school, I was kind of turned on 
to math by a particular teacher I had there (a guy called 
Harry Seldon who, I remember, put up Pascal's triangle), 
going "Wow, look at that! That's really interesting.” And 
I remember, at primary school I was reading the high 
school book on Euclidean geometry and I thought that 
was pretty interesting. I think the interest in logic would 
have come in secondary school because logic was offered 
as a subject at high school. And I just thought it was 
interesting; so I did what I wanted to do:  Math I, Math 
II and Logic. I think I was the only person probably ever 
to do this combination of subjects. It was kind of fun 
really, you know, the problems of induction by Hume and 
modal logic and stuff.

When I went to university, I was planning to do chemistry, 
but when I got through first year chemistry, that was 
enough for me. I thought, you know, actually math 
looks a lot more interesting, especially when I was told I 
probably wouldn't be any good at it [mathematics] by my 
academic adviser. I had been pretty wild in my first year 
of university and had done almost no study.

But I don't know. Young mathematicians are often 
attracted to fundamental issues and there is no doubt 
that logic is concerned with fundamental issues, and in 
mathematics, it kind of feels good to study it [logic]. You 
feel like you're dealing with the fundamentals really.

I  But very few schools offer logic as a subject, 
isn't it?  

D:  Correct. It's no longer offered in Queensland, but 
back in those days they had [such] a curriculum. Funnily 
enough, logic was put in schools for those people who 
were not good at mathematics. If you're good, you could 
do like mechanics and things like that. We had a small 
number of options and “science” students did 6 subjects: 
Maths I, Maths II (mechanics), English, Chemistry, Physics 
and one other subject, usually “tech drawing” for male 
students and biology for female. A forgotten age. Logic 
was a maths alternative subject in the “humanities” or 
“commercial” streams and usually there was no crossover. 
The idea is that non-science students would not need, 
for example, calculus, but logic would somehow prepare 
you for reasoning in life. [Added December 2020: A bit 
of logic in our dealing with Covid-19 would have not 
gone astray.]

I  Many Australians would have chosen to go to 
England or the United States for their graduate 
studies in the 1970s and 1980s. Why did you choose 
to go to Monash University even if logic was done 
there? 

D Well, again, I think there were two reasons. Firstly, 
it was a different age. In some sense the reason I 

went to university at all was that Gough Whitlam had 
been voted into power in Australia, and universities had 
become free for all. I was very lucky and because of my 
family’s modest means, I also got lots of financial 
assistance. But also I think there's a lot more opportunity 
to go overseas now than there was then (although this 
could be my ignorance in the 1970’s). I applied for 
standard scholarships, like the Rhodes Scholarship and 
the Commonwealth Scholarship and things like that. I 
got interviews for the Shell Scholarship and the Rhodes 
Scholarship, but didn't get them. (Shell did make me a 
job offer, though!) I don't know why I applied, as I had 
no especial desire to have them. I just heard they were 
prestigious scholarships, but I had no particular reason 
[to apply for them]. And I think, more importantly, I was 
kind of naive in the ways of all things academic because, 
I mean, coming from a background where nobody in the 
family had ever gone beyond 10th grade, I had no idea 
why wouldn't Australia be just as good as anywhere else, 
you know? Then in my final year at university, I did get 
an interest in advanced mathematical logic (particularly 
computability related issues) studying things like the 
Eklof-Fisher work5  on the decision procedures for abelian 
groups. So I kind of liked logic. The only people who did 
any computability theory anywhere in Australia were at 
Monash. So then I got a scholarship to go down to 
Monash to do a PhD. It's kind of funny that I've seen a 
lot of people who have got PhDs from the so-called 
power universities and who weren't actually that good 
in the long run. I speculate that perhaps this is because 
there's a vested interest in those universities to get people 
through PhDs. Of course, there are tremendous people 
that come through, but I'm just thinking about my own 
university [Victoria University of Wellington]. We have 
some people like that and we have three world-class 
mathematicians, Geoff Whittle, Robert Goldblatt and, I 
guess, myself (talking about “older members”; we also 
have a bunch of talented younger people. We definitely 
have a world class logic group.). Geoff Whittle's work 
was spoken about at a recent International Congress of 
Mathematicians – very, very difficult high-powered 
brilliant work in matroid theory. And Rob Goldblatt is 
extremely well known in logic and topos theory. Geoff 
Whittle got his PhD in Tasmania, and Rob Goldblatt got 
his PhD at Victoria University of Wellington. So he 
[Goldblatt] didn't even ever leave the university that he 
started from, which I don't think is really a good idea. 
None of these people did their PhD’s at “power” 
universities. So I think somehow if you do your PhD away 
from the major centers, you may not get all of the ideas, 
but on the other hand, it's all your work and you really 
learn to work independently. And coming from that 

environment, you can still keep working as you have 
learned how to work independently, whereas I've seen 
some people who maybe can work at Harvard or 
somewhere, but when they're not in such rich 
environments it's much more difficult for them.

I  Was John Crossley your supervisor?

D Yes. He was a supervisor in a kind of the British 
sense, which was rather hands-off in many ways. 

But he did have a lot of good visitors and an extremely 
good library, a personal library of preprints and things, 
which were important in those days. Because of that, I 
learned to do independent research. And Chris Ash was 
down at Monash, which was very lucky for me. Chris Ash 
was an extremely good logician and we spoke a lot. He 
committed suicide at a young age, sadly6. 

And there was another guy called John Stillwell. His PhD 
was actually in recursion theory but he later changed 
[his area] and he's now well-known for his expository 
works in the history of mathematics and in topology. I 
learned topology from him. I thought that was extremely 
interesting. I can't say that not doing my PhD in one of 
those major places hurt me in any mathematical sense, 
but it can hurt you in other senses. I'm now old enough 
to have been on more appointment committees than I 
ever want to be, but you see people go, "Oh, look at that 
person. They've got an MIT PhD." And I think, "Nay, so 
what?” I mean, let's see what they do in the years after 
their PhD, you know. I think we're too easily blinded by 
this vision of a hierarchy in our own minds, but this is 
still true around the world. I mean, it's very rare to go 
to an Ivy league school and find professors who weren't 
also educated at Ivy league schools. So “placement 
entropy” seems to operate, as well as an “old boy” (or 
at least “old person” network). I think I saw this with 
my eldest son [Carlton] too. He's did his PhD at Carnegie 
Mellon in machine learning, and it's an extremely good 
machine learning department that just has connections 
everywhere. This made his post-PhD path easier, I believe. 
So I guess that matters.

I  After your PhD, you spent a few short stints in 
Australia, United States and Singapore. You 

were, in fact, in Singapore for nearly three years 
before you moved permanently to Victoria 
University of Wellington in New Zealand after a 
year at the University of Illinois at Urbana-
Champaign. It is understandable for you to leave 
Singapore, but to choose to move permanently to 
New Zealand rather than to the United States 
seems to defy logic. Is there any specific reason for 
this move?

D Well, first and foremost, there's more to life than 
academics. The job situation was very tight in the 

eighties. All of the jobs had been filled up by people 
during the Sputnik years. And then as now, Australia 
didn't really employ logicians except in computer science. 
I was offered a job at NUS. I thought, “Why not?” And 
so I came over here and I found NUS a remarkably 
pleasant place to be in. I did lots of research there. I 
enjoyed working with [Chong] Chi Tat and Yang Yue and 
people like that. It was kind of fun. But there is more to 
life than the academics, you know. My wife and I really 
wanted to bring our family up in the kind of environment 
that we remembered being brought up in. And that 
meant Australia and perhaps New Zealand. We had been 
both to New Zealand. So we knew it was a reasonable 
place to go to. And when I went to New Zealand, it was 
going to be for four years, and  then we’d go back to 
Australia. But here I am,  still in New Zealand and now a 
citizen, because Wellington's a lovely place to be in. And 
you know, it's turned out to be a great department too.   

I  Why not back to Australia?

D Well, I didn't get offered a job, did I? It was pretty 
simple. By the time I could've got a job in Australia, 

I didn't want to move. Because we already had kids and 
I was already senior and the whole thought of moving, 
you know, ... I had opportunities later to possibly move 
to chairs and things like that but I didn't take them. We 
knew we didn't want to live in the US either. I have lots 
of friends who are Americans. I like visiting the place, but 
I don't think I'd like to live there. We wanted our kids to 
just go down to the beach and do those things that 
Australians and Kiwis do. It's just, you know, play rugby, 
cricket and all that kind of stuff.

I  You have a personal chair in New Zealand. 
They are quite generous to you in terms of 

being given the perfect liberty of doing almost 
anything you like, isn't it? 

D Oh, in terms of teaching, there's never been any 
expectation. The only thing I had to do when I got 

there as a junior person was that they needed someone 
to set up a discrete math program. And I basically set up 
the discrete math program at Victoria [University of 
Wellington]. And after that, when I was doing more 
advanced courses, I could teach whatever I like. And so 
I remember at one stage, I thought, “Well, it could be 
fun to learn some computer science.” So I taught 
complexity theory for a few years and that's where 
probably parameterised complexity came from and 

6 Christopher John Ash (1945-95)
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meeting Mike Fellows, of course7 . This academic freedom 
was a kind of nice thing. Of course I always did my service 
teaching and I think that it is important that senior faculty 
are involved in, for example, first year teaching.

There were few constraints on me because I was always 
really productive and no one would ever have questioned 
that I wasn't working hard. And the other thing is, of 
course, in the early days, I always found that small trips to 
places and then working hard afterwards was definitely a 
way to be research productive. So I'd go and visit Richard 
Shore at Cornell or Carl Jockusch at Urbana-Champaign 
or someone like that. I learned a lot from Richard, Carl, 
Ted Slaman and others who changed my thinking about 
mathematics. And I'd work there for a while over a few 
weeks and then come back and look at the details. I 
don't necessarily find living in someone's pocket overly 
productive ... How often do you see people working with 
people in the same department over a sustained period? 
It's kind of rare actually. (I guess Hardy and Littlewood 
spring to mind.) 

So the only difficulty in the early days was actually 
getting overseas because there was zero research money 
available. There was no granting agency (in New Zealand). 
So I used to beg these people. “Oh, look, if I can give 
you three talks here and three talks there, can you come 
up with, you know, a few hundred dollars to help pay 
for my airfare and things?” It all kind of worked out in 
the end. And now, of course, in New Zealand there's the 
Marsden Fund, which was a great initiative and funds 
blue sky research. Two good things happened to me: 
first, the internet came to be. I think the internet's made 
a big change for researchers away from the central places. 
If you go back probably a hundred years, any decent 
German university probably had more mathematicians 
than there were in the US, certainly at Harvard or 
something like that. Then there was a movement to the 
[United] States because of the War and things. So only 
then did US mathematics flower. And the internet came 
in in the early nineties and it was great because, instead 
of taking two months to write a letter to somebody and 
get a reply, it was kind of instantaneous. You can write 
a letter and you get an answer and you go, okay, and 
that kind of thing. So I could bug people really quickly 
rather than slowly. And the Marsden Fund has been very 
generous. I've been lucky enough to get lots of Marsden 
grants, and I've had great postdocs down through the 
years. I have had 22 of them, and many now occupy 
positions at leading Universities (like Chicago, Berkeley, 
etc), so I was lucky to have such brilliant people work 
with me when they were young.

I  You once mentioned there was kind of a 
fighting spirit that spurred you to do well in 

your undergraduate studies. Do you think that 
this is indicative of if not characteristic of a kind of 
contrarian spirit that drives you in your early 
research work in areas that were not considered 
to be promising? 

D I did see the questions beforehand and my wife said 
“absolutely yes” to this. [Laughs] My view in 

mathematics is kind of weird in the sense that I like to 
work on what I like to work on. And if something's 
interesting, then usually I find that if you follow your 
intuition, it probably will be interesting. And you know, 
I'm not one of these people that have, like, the reef fish 
effect with what's the current “research target” that the 
reef fish are following. This came, for example, with 
parameterized complexity. I mean, we used to get very 
discouraging reviews of that in the early days when 
people would go, "This seems to be a very small thing.” 
(Even reviews saying, in effect, “if this is important why 
aren’t people from e.g. Berkeley doing it?”) And now 
there're millions of euros going into the research in Europe 
and things like that because it's turned out to be useful. 
People are using parameterized complexity methodology 
now in Australia for trying to solve deafness in Aboriginal 
children. So it's kind of shocking to me actually. I think 
you just got to follow your intuition rather than trends. I 
do what I think is interesting and also I get bored after 
about a decade; I want to do something else.

I  Although one often refers to “logic and set 
theory” as if they were inseparable twins, 

there is no distinctive field that combines logic 
and set theory in the way that fields like algebraic 
geometry, differential geometry, topology, 
algebra, algebraic geometry, etc combine the 
language and tools of two different fields. Do you 
see any signs that logic and set theory are drifting 
further from each other, logic towards more 
applications like applicable disciplines like 
computer science, and set theory towards rarefied 
universes of its own, with its own questions?

D It's a very long question. Well, I'm not a set theorist 
and I don't actually know that much about set 

theory, to be honest. I mean, my understanding of pure 
set theory is that they have their own internal questions 
that have driven them like “What is the real value of the 
continuum?” But, of course, there are areas like 
descriptive set theory, which have been around since 

Lebesgue8  and Luzin9 , and which are going through a 
tremendous development in the last few years with 
initiatives like Borel10  reducibility where you're trying to 
understand the relative complexity of problems from 
analysis and things like that. This is a very flourishing area 
and it's actually interacting with the rest of logic and the 
rest of recursion theory. 

This is an area that I'm working in myself currently too, 
in a kind of modest way, in a project trying to give a 
measure of complexity to discontinuous functions on 
the reals. So a function is continuous if and only if it's 
computable relative to an oracle. If I give you some kind 
of oracle, which tells you how to take rational balls to 
rational balls, which is a countable collection of things, 
so you can code them up with an oracle. Then if I know 
that oracle, then relative to that oracle, I actually have 
a computable function on the reals.  The trouble is that 
it's more difficult to do this with discontinuous functions. 
So there's a nice problem: How do you extend a notion 
of complexity to discontinuous functions or how do you 
measure the complexity of a discontinuous function? And 
this is a really nice project because you're kind of climbing 
your way up through what's called the Baire hierarchy. 
This is some work with Linda Westrick and Adam Day. 
Amazingly enough, some of the fine reducibilities that we 
looked at turned out to correlate to things that people 
had studied classically, like there was a hierarchy called 
the Bourgain hierarchy, which we knew nothing about. 
And it turned out that viewing things computationally 
turned out to be identical to viewing things the way that 
people viewed them classically. The Bourgain hierarchy 
kind of classifies Baire functions. It classifies Baire class 1 
functions according to how much they wiggle.  

I  So you're going back to the roots? 

D Yeah. Logic does lots of those things. I remember 
talking to algebraists (who want to know what logic 

can do for them) and saying. “Well, we prove, for 
example, that the isomorphism problem for torsion-free 
abelian groups is what's called “analytic complete”.” 
Now, what does that mean? Well, people study invariants. 
They want to know what's the dimension of a vector 
space. There are the Ulm invariants for abelian groups 
and things like that. Well, logic tells you how not to do 
things. Proving this isomorphism problem is analytic 
complete essentially shows that there's no way of 
assigning invariants of torsion-free abelian groups. That 
is, no “invariants” can simplify the problem below to 
make it easier than the trivial invariants of “isomorphism 

type”. So in other words, there can't be any invariants by 
showing that it's as hard as any other isomorphism 
problem, which is kind of a nice result. It's using logic to 
answer a question you might have asked, which is a 
classical question.

I  It seems to me that in logic you sort of refer 
to the negative in a certain way. You cannot 

do this. You cannot do that. 

D Well, there are lots of examples of that. But there're 
always positive aspects to negative answers; not 

that I suggest that my work is like Turing's, but we witness 
in Turing's work on the "Entscheidungsproblem" 
["decision problem"], the key idea is a compiler ultimately. 
Look at compilers all around the world today.  

I  But he didn't use the word compiler at that 
time.  

D It was a conceptual compiler. The idea that you can 
have a single interpreter which does the work rather 

than designing a machine for each computational 
purpose. But there are also lots of positive mathematical 
applications of logic, such as new proofs of various results 
using methods from logic. For example, work by Niel Lutz 
(Jack Lutz's son). They're using computable methods to 
analyse Hausdorff dimension. So what happened was, I 
think, there was a divergence in logic while it was being 
developed, particularly computability theory. But now 
there's a big movement towards pushing it back into the 
areas from whence it came, towards understanding the 
computational content of classical mathematics.

There is also a reason that logic is intertwined with 
computer science. People like Moshe Vardi11 observe that 
it is the calculus of computing. But I was never drawn 
to proof theory.

I  Set theory seems to be going the other way 
round.  

D I don't feel competent really to comment. For 
descriptive set theory, that's certainly not true [that 

it’s going the other way]. Descriptive set theory, which is 
a certain subarea of set theory, has never left analysis. 
It's always been intertwined with analysis. And I guess 
also, [Saharon] Shelah’s work on classification (that's all 
about mathematics) that tries to answer questions like 
"When do theories have invariants?" in a different way. 
His view is that (this is my view of his view; you've got to 
read that monstrous book of his)12  either a theory should 

7 This meeting and subsequent development of parameterized complexity is  reported in “The birth and early years of parameterized 
complexity,”The Multivariate Algorithmic Revolution and Beyond, Essays Dedicated to Michael R. Fellows on the Occasion of His 
60th Birthday, Lecture Notes in Computer Science, Vol. 7370   (ed. Bodlaender, Downey, Fomin and Marx) Springer-Verlag LNCS 
7370, 2012, 17-38.

8 Henri Léon Lebesgue (1875-1941)
9 Nikolai Nikolaevich Luzin (1883-1950
10 Félix Édouard Justin Émile Borel (1871-1956-)
11 See “Interview with Moshe Vardi: Dare to Know” Imprints Issue 32, July-December 2018, 12-20
12 Classification theory and the number of nonisomorphic models”, Vol 92 of Studies in Logic and the Foundations of Mathematics. 
North Holland Publishing Co., Amsterdam, second edition, 1990
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have a small number of models with a certain collection 
of invariants, and here they are, or they just have too 
many models to have invariants. Then they basically look 
like trees and there are just too many trees. So you can't 
hope to have invariants. This is called the Dichotomy 
Theorem.

I  Other than the famous P = NP problem, what 
are some of the central problems of 

computability and complexity? Do you see any 
prospect of the P = NP problem being solved 
within the next 10 years? (There are actually two 
questions here.)

D Well, I think it's fair to say that most areas of 
mathematics have their own internally generated 

problems. And they gain importance when people can't 
solve them. Sometimes it's not even clear why they're 
important; it's just that people tried to solve them. 
Witness Fermat's last theorem. The fact that it's solved 
kind of damaged the research. I mean, it has developed 
Kummer's theory of ideals, all kinds of wonderful things, 
but now it's being solved, right? Of course, computability 
and complexity has had many, many of their own 
problems. I can name some of the things: Vaught's 
conjecture, Martin's conjecture, and these are internally 
generated problems, which give insight into the areas of 
their study. And most areas that I've kind of moved into 
or looked into are full of these things: the classification 
problem, the invariants problem. There’re all kinds of 
problems like these. But are there other really profound 
things in logic which can transcend mathematics like the 
P versus NP question? Probably not. It's hard to say. I 
think that history decides these things.

Anyway, there are a lot of problems in complexity theory 
which seem just as hard as the P versus NP problem. For 
instance consider the P versus BPP problem, where BPP 
stands for “bounded probabilistic polynomial time”. BPP 
are more or less those things which have probabilistic 
algorithms. And the famous example of something in that 
class was primality testing, and that was known to be BPP 
by using the Solovay-Strassen13 algorithm, for example, 
which is a probabilistic algorithm with one-sided error. 
And it either says no, the thing is not prime, or yes, it may 
be prime with some error like 1/2. But if you then do it a 
thousand times independently, the probability that you 
have an error believing that it is prime, when it's not prime 
is like very, very low. However, this problem was famously 
proved to be in polynomial time (by a very bad algorithm 
in terms of running times). That is, a BPP problem was 
re-classified in to P. And now it is thought that everything 
in that class BPP is in polynomial time. When I was young, 
we thought BPP did not equal P, but now there's a belief 

that actually BPP = P: That is, everything that has these 
randomized algorithms can actually be de-randomized. 
We have no idea how to do prove this and it's kind of an 
important problem because, we do have BPP algorithms 
for lots of things. 1

Polynomial identity testing (PIT) is a good example. The 
problem is specified by being given a polynomial in a 
whole bunch of variables over a finite field. The question 
I want to answer is, “Is the polynomial uniformly zero?” 
For example take z3z1z2 – z2z3z1 , which is always zero 
no matter what input I give it. There is a randomized 
algorithm for PIT but the algorithm is kind of dumb. You 
just put in random values from the field, assuming the 
field is large enough. And if you get zero, you go, “yes”. 
If you don't get zero, you go, “no”. “No” is definitely 
correct. If you say yes, then it is probably correct because 
the chance of guessing a zero is very low as zeroes for 
nontrivial polynomials are very sparse.  And why is this 
an important problem? Because there are lots of things 
which can be transformed into PIT using an efficient 
reduction. Thus to solve our problem we transform it 
into a polynomial and solve polynomial identity testing. 
(Examples of this methodology can be found in my book 
Fundamentals of Parameterized Complexity with Fellows.)  
We have absolutely no clue how to derandomize PIT. So 
that's a nice problem.

There're lots of problems like this that we have that we're 
not even close to solving. And it would be hard to believe 
that all use the same trick that P versus NP does. But, 
on the other hand, you know, there's another one (my 
favorite): "Is W[1] = FPT?"14

But actually, if you want a really important problem [for 
practical computing], I say to myself, what is the goal 
of computer science? What is the goal of computability 
theory? And I think the answer is: to understand 
computation. And so I think that the biggest problem 
that I'd like to try and solve is the following. I don't 
know how many mathematicians out there would 
know that, in fact, Sat Solvers (solve the satisfiability 
problem for propositional logic, something which is a 
fundamental NP-complete problem) are pretty efficient 
in industrial problems. So what you do is -- it's a very 
weird thing -- you take an industrial problem and you 
use an efficient reduction to convert it into an instance 
of satisfiability. That's NP complete: satisfiability. And 
then you run it through a Sat Solver, something which 
has been algorithmically engineered to solve this. Now, 
we know that theoretically it won't work, but for lots of 
natural problems appearing in real life, it works very well 
indeed. You know, NASA uses it for their independent 
robots and all that kind of stuff. We have no idea why it 

works well on such problems.  I mean, we honestly don't 
know why.  What is it about the topology (or something) 
of the “real world” which makes seemingly intractable 
problems tractable? If we could understand this it would 
revolutionize algorithm design.

I'm assuming P doesn't equal NP; of course, it would 
be revolutionary if P equals NP with an algorithm that 
is efficient.  You know, modern banking security would 
be destroyed, and many computational tasks would 
become wildly more efficient. But I actually don't believe 
that P=NP with an efficient algorithm.  (If P=NP via an 
algorithm which took polynomial time with an exponent 
or constant such as the number of atoms in the universe, 
it would not really be of much use.) Thus, if we could 
really understand what it is about the universe that 
enabled things that theoretically shouldn't work but 
does work most of the time, then that insight would 
enable us to more efficiently design things. This is a 
really hard problem, but I think it's the big challenge. 
Computing practice generating theoretical questions 
in discrete mathematics is an analogue to the fact that 
classical physics generated a lot of classical mathematics. 
Computing is a great source of wonderful problems 
in mathematics.  Suppose a hundred years from now, 
we prove P ǂ NP is independent of the axioms of set 
theory, this problem of explaining practical tractability  
would be still a very important problem to solve. And I 
think that's a tremendously good problem. So, in other 
words, invent a theory of complexity that explains the 
actual behaviour of algorithms in real life. And we lack 
that completely. I mean, an average case doesn't work, 
a generic case doesn't work. Parameterized complexity 
explains things some of the time.  There're all kinds of 
different approaches, but we don't have any approach 
in genuine mathematics. It could make a difference to 
mankind or something like that.

I  Could there be any sort of limitations in the 
human brain that actually prevents certain 

problems from being solved?

D Almost certainly. But I think we won't know. I mean, 
if you take the “hard AI” view that we're just 

machines and therefore the incompleteness theorem 
must apply to us, then there are things that we won't be 
able to solve.  The question also involves AI. I am aware 
that machine learning can solve hard problems like the 
game of Go better than humans. But also important 
problems like protein folding with far greater accuracy 
and we don’t know how it does it! I wonder if we might 
get to the same state in mathematics.

I  Do you think we're hardwired for logic?

D I would have thought so down through the years, 
but having seen recent events in politics, I'm not 

completely sure I'd agree with that. I thought the world 
was becoming more logical until recently. I mean, logic 
goes back a long way, but it was still an achievement. 
Throughout history, mathematicians regard Greek 
mathematics with awe. I mean, there was a good reason 
for that: it was an amazing achievement, really. Euclid's 
Elements is an amazing book.  There is a reason that that 
horrible machine learning used on the net targets 
emotional responses rather than reason. We are 
emotional beings.

I   Is there such a thing as evolutionary logic?  

D Evolutionary logic ... what does that mean?  

I  I mean, we talk about evolutionary psychology, 
evolutionary biology.  

D There are things called non-monotonic logic that 
studies the logics of things evolving with time. They 

use this in computer science quite a lot. There's something 
called linear logic, which is actually a kind of “capitalist” 
logic. You kind of only have a certain amount of things 
to spend. And every time you use something, you spend 
some of these. Non-monotonic logics are, generally 
speaking, a kind of logic of belief. You believe things and 
you'd make deductions, but then as things change, you 
update your beliefs and then maybe things you thought 
of before were no longer true. And, of course, that's very 
similar to the kind of logic that we use for the scientific 
method.

I  Some call it fuzzy logic.

D Fuzzy logic, yeah. I remember one of my lecturers, 
when I was an undergraduate, said to me: "You 

know, fuzzy logic, that's an example of mathematical 
pornography." which I thought was hilarious at the time. 
And it turned out that fuzzy logic is actually used in these 
circuits in Japan, you know, these logic circuits that dry 
your washings and all that. They're using fuzzy logic. So 
who knows, I mean, there we go. Who knows what's 
important?

I  How do you choose the problems to work on? 
Do you prefer to work on hard problems?

D Well, I just follow my intuition. If I look at something 
that looks good or doable, I'll give it a go. There are 

certain areas that I don't particularly want to work on 
because they're not to my taste. But sometimes you're 
driven by the need to find problems for students to do. 
That's about all, but usually I get bored after a while. 
Then I want to do something new. I like that initial 
learning when you get into a new area, when you kind 
of learn what's going on in that area. I like the challenge. 
So I had my parameterized complexity decade, and then 
I got into randomness. And now I'm more interested in 

13 Robert Martin Solovay, Volker Strassen
14  W[1] = FPT, a central problem of parametrized computability

IM
TE

R
V

IE
W

IN
TER

V
IE

W
  PRINT JULY – DECEMBER 202016 17ISSUE 36

imste
Highlight

imste
Highlight

imste
Highlight

imste
Highlight
double spacing?



model theory and computable analysis, also online 
algorithms, and who knows what. Maybe I've only got 
a few years left, I suppose.  

I  Which result of yours surprises even you 
yourself?  

D Well, there are lots of things that I've worked on. 
The answers have surprised me. I mean, there are 

lots of things which I thought were true turned out to 
be false. Lots of things that [I thought] were false turned 
out to be true. I think the thing which really did surprise 
me was in parameterized complexity. The stuff we [Mike 
Fellows and I] began working on years ago really has 
turned out to be actually useful and we wouldn't have 
anticipated that. I know we didn't anticipate it in the early 
days because I have old correspondence from Mike on 
where we were going, "Oh, do we think this would ever 
be useful?" And it turned out to be quite useful, both in 
terms of the mathematics they're now using, for example, 
the techniques in low dimensional topology and providing 
algorithms much better than the currently known 
algorithms in, for example, computational biology. So 
those were great surprises to me. You know, my wife 
was surprised too. She said, “You did something useful.” 
I said, “Well, it wasn't my fault, [Laughs] I didn't try.”

I  There is a persistent perception, that 
mathematics is a closet activity with 

mathematicians working mainly on their own as 
exemplified by the well-known successes of 
Andrew Wiles and Yitang Zhang. How much of 
this perception has changed during the past 10 
years?

D I think you can't avoid the fact that mathematics is 
a social contract. It has its own society and each 

sub-area of mathematics has a different way of working. 
And I think there are certain areas of mathematics where 
people do tend to work a lot by themselves. You could 
say that with number theory. Yet look, Terry Tao has lots 
of co-workers and is notably, I think, one of the first to 
get a Fields medal for lots of joint work. I mean, previous 
Fields medal winners didn't have much joint work. I think 
the fact that communication is so easy now surely must 
encourage people. I know there's this stereotype of the 
mathematician that sits in his room and doesn't talk to 
people and indeed I've met such people. But, on the 
other hand, I've met lots of mathematicians that like 
working with other people. I love working with people. 
It's much more fun, and you have that sense of 
competition, especially with younger people and you also 
have this to-and-fro flow of ideas. Why wouldn't you 
want to work with other people? It's bizarre to me that 
people wouldn't want to work with people. I've had 20-
odd postdocs now, and I stay in touch with all of them. 
I mean, try and keep working with them. So yes, I think 

it's now changed. Maybe not in some areas, but who 
knows? Of course, there are some areas of science where 
you've got to have Sherpas. I mean, you can't do big 
experimental data without lots of Sherpas to help you 
with your research and experiments. I think in mathematics, 
certainly in computability and complexity theory, the 
number of authors per paper seems to be rising. There 
is surely a reason that places like Google, Facebook, etc 
have teams of people working on their problems, as the 
sum of lots of very smart people is certainly greater than 
its parts.

I  It's not so much with pure mathematics. 
Maybe in applied mathematics, there is more 

collaboration.

D Well, in applied mathematics, you've got to have 
people doing computations and things. As data gets 

more complex to understand, you need more skills being 
brought to bear. I'm sure there will always be pure 
mathematicians who are the lone geniuses that just want 
to do what they want to do. But I think it's much more 
fun to work with other people. You've got to find people 
who care about what you care about too, because there 
are only so many people in the world that care about 
Martin-Löf randomness, or other specific  things you care 
about. You should get to know them.

I  On a philosophical note, mathematics is 
something that is sort of drawing necessary 

conditions. So if you're very, very bright, or let's 
say you have an infinitely intelligent person, then 
mathematics is really easy, isn't it?

D Is mathematics easy? I wouldn't know about super 
bright people, but I don't think I've ever met a 

mathematician who was successful and who didn't really 
work hard. When I was at university in my early years, I 
was pretty lazy because I had this kind of belief that, well, 
you know, if you kind of knew the axioms and kind of 
knew how things worked, you could survive (i.e. pass 
exams). But once you get to doing research, forget it, 
right? You really have to work hard. I've met people that 
pretend not to work hard. Well, I think there was an old 
British thing that you're supposed to pretend that you 
were just occasionally coming back from the golf club or 
something like that. But of all the people I know whom 
I would regard as really good mathematicians, they work 
hard. There're no two ways about it. You know, it's like 
if you work hard, you get lucky. You've got to be pretty 
obsessive. If you want to be good at tennis, you've got 
to be pretty obsessive about practice. If you want to be 
good at mathematics, you've got to be pretty obsessive 
about the problems. And they've got to be in your head 
all the time. You've got to fill yourself with them.

I  This brings me to the next question. You have 
once written that mathematics is also a social 

activity and yet the breakthroughs are dependent 
very much on personal insights which occur  
only after an intense and almost obsessive 
preoccupation with a problem. What is your 
personal recipe for success in mathematics?

D My recipe is just as I would tell a PhD student, that 
if you really want to succeed in mathematics it's got 

to be something you can't do it from nine to five. It's got 
to be something you obsess about. One of the things 
that always annoy me is that, if I'm doing an administrative 
role, I wake up in the night thinking about how am I 
going to get some new course in or something like that. 
Whereas I should be waking up in the night thinking 
about a [research] problem that I've been working on. 
But I don't see how it's possible to achieve in mathematics 
without real work. I like working for short periods of time 
with people, but then I like going away and rolling it over 
in my head. And, you know, there are problems I've been 
working on for years that I still haven't solved and they 
come back to haunt me constantly. I don't know how 
other people work, but this is the way I've always worked: 
“Think really hard.” If I do it too much, too long, I wake 
up [at night], I start feeling kind of unwell from indigestion 
and things. Like anything else, you've got to have little 
breaks. But if you're going to work on something, you 
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really got to work at it. You got to immerse yourself in 
the problem. It's the only way to go, just like anything 
else. I mean, if you're going to do something, you might 
as well try and do it well. I guess I had a really great 
training from my parents who didn't really care about 
success but about effort. I mean, they had no idea what 
I was doing, of course. They didn't really care about 
anything I did as long as I gave it my best shot. If you 
succeed, great; if you don't, well, you can't look back 
and go, “Well, I didn't try.” I find mathematics very, very 
personally rewarding when things work out. It's very 
personally frustrating when things don't work out. To a 
student or a young researcher, I say that the most difficult 
thing in mathematical research is coping with frustration 
and getting used to the fact that most of the time you 
lose. The opponent wins and the opponent is more 
powerful than you are. If you work on hard problems, 
you will fail most of the time. But, you know, sometimes 
you get a little insight and that's good.

For more information on these and 
other upcoming events, visit the 
Events section on our website at 

ims.nus.edu.sg

 I THINK YOU CAN'T AVOID THE 
FACT THAT MATHEMATICS IS A 
SOCIAL CONTRACT. IT HAS ITS 

OWN SOCIETY AND EACH SUB-
AREA OF MATHEMATICS HAS A 

DIFFERENT WAY OF WORKING.  
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