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Abstract. We explore the complexity of Sacks’ Splitting Theorem in terms of the mind
change functions associated with the members of the splits. We prove that, for any c.e. set
A, there are low computably enumerable sets A0 t A1 = A splitting A with A0 and A1

both totally ω2-c.a. in terms of the Downey-Greenberg hierarchy. We also show that if cone
avoidance is added then there is no level below ε0 which can be used to characterize the
complexity of A1 and A2.

1. Introduction

Beginning with Friedberg’s paper [11], some of the earliest theorems in computability theory
are those concerning splittings of computably enumerable (c.e.) sets. We say that A0tA1 = A
is a splitting of A if A0, A1 are c.e., disjoint and A0 ∪ A1 = A. One of the reasons that
splitting theorems have interest is their interactions with the c.e. degrees. If A0 t A1 = A,
then deg(A0)∨deg(A1) =deg(A) holds in the Turing (and in fact weak truth table) degrees.

One form of Sacks’ famous splitting theorem [13] asserts the following.

Theorem 1.1 (Sacks [13]). For each noncomputable c.e. set A there is a splitting A0tA1 = A
with A0 and A1 both of low degree with A0|TA1.

In particular, there is no least c.e. degree, all c.e. degrees are join reducible, and the low
c.e. degrees generate the computably enumerable ones. For more on the many interactions of
splittings of c.e. sets with the c.e. degrees and other topics in classical computability theory,
we refer to the somewhat dated but extensive paper Downey-Stob [10].

Ever since Soare’s classic paper [15], Sacks Splitting Theorem is pointed as a quintessential
example of a finite injury argument of “unbounded type”. By this we mean the following. The
standard simple proof of the existence of a c.e. set of low degree, of the Friedberg-Muchnik
Theorem, as per Soare’s book [16] (or any other standard text), uses a finite injury priority
argument where requirements are injured at most a computable number of times. In the
standard proof of the Friedberg-Muchnik Theorem each requirement R2e is injured at most
2e many times. This makes the relevant sets not just low, but superlow. That is, for each
i ∈ {0, 1}, not only is A′i ≡T ∅′ but A′ ≡tt ∅′, since each partial function f ≤T A can be
computed with an approximation with at most a computable number of mind-changes in the
sense of the limit lemma.

When teaching computability theory, we always point out that Sacks’ Splitting Theorem
has a completely different character since, whilst both A0 and A1 splitting A are low, we have
no a priori knowledge of how many injuries the requirements will have.

In the present paper we address the following question:

Question 1.2. Is there some way to quantify the difference between the Friedberg-Muchnik
Theorem and Sacks’ Splitting Theorem?
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1.1. How should we answer this question? Could there be some proof of Sacks’ Splitting
Theorem avoiding the feature of “unbounded but finite injury”, so that it is simply an artifact
of the standard proof rather than a necessary feature?

One possible way to answer this would be using “Reverse Recursion Theory” by asking
what amount of induction is needed for proving Sacks’ Splitting Theorem in fragments of
arithmetic. In this setting we do know that there is a difference. Mytilinaios [12] showed how
to use an analog of Shore’s Blocking [14] to prove this theorem in P− + IΣ1, whereas Chong
and Mourad [2] showed that the Friedberg-Muchnik Theorem can be proven in the weaker
system of P−+BΣ1, and also proved that Theorem 1.1 fails in some model of P−+BΣ1. We
include these results to mention one possible approach towards answering the question of what
level of “unbounded injury” is necessary for Sacks’ Splitting Theorem. Here the interpretation
is that the system with BΣ1 corresponds to computably bounded injury. We refer the reader
to Chong, Li and Yang [3] for more on this topic.

1.2. Using classical notions. If we wish to use classical computability theory, we need to
find some way to show that the arguments must be different.

Perhaps lowness might be the key. As mentioned above, we know that if a set is constructed
to be low using a standard argument superlow where X is superlow if X ′ ≡tt ∅′. How does
this work for splitting theorems?

Downey and Ng [9] have shown that if we consider splitting with low replaced by superlow
then then Sacks’ Splitting result fails. Indeed, as we see in Theorem 1.3 below, a stronger
result is true.

The setting of the present paper In this paper, we will take a different tack to attempt to
understand the complexity of the argument needed for Sacks’ Splitting Theorem. We will use
the new Downey-Greenberg hierarchy [4, 5] of computably enumerable degrees. This hierarchy
seeks to classify the complexity of c.e. degrees according to the ease of approximation of total
functions computable from them. The Downey-Greenberg Hierarchy was inspired by the array
computable c.e. degrees defined by Downey, Jockusch and Stob [8], where a c.e. degree a is array
computable iff there is a computable order g (i.e. a computable nondecreasing unbounded
function) such that if function f ≤T a, then f has a ∆0

2 approximation f(·) = lims f(·, s) such
that for all x,

|{s | f(x, s+ 1) 6= f(x, s)}| ≤ g(x).

It is easy to show that all superlow c.e. sets are array computable. But there are non-low c.e.
sets that are array computable ([8]). Thus the notion of array computability is a measure of
describing the fact that the degree is easy to approximate in a very specific way. We now know
that array computable degrees capture the combinatorics of a wide class of constructions in
computability theory. For instance, a is array non-computable (i.e. not array computable) iff
it can compute

• c.e. set of infinitely often maximal plain Kolmogorov complexity,
• disjoint pairs of c.e. sets A,B, with ω− (AtB) infinite and no set separating A from
B of degree 0′,
• a perfect thin Π0

1 class, etc.

There are many other characterizations of array computability and we refer the reader to [5],
for example.

Following a suggestion of Joe Miller, in [6], array computability was generalized to what is
called totally ω-c.a. where a has this property iff for all f ≤T a, there is a computable order
g such that f has a ∆0

2 approximation f(·) = lims f(·, s) such that for all x,

|{s | f(x, s+ 1) 6= f(x, s)}| ≤ g(x).
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That is, a is “nonuniformly” array computable, but is still effectively approximable. In [6],
Downey, Greenberg and Weber showed that the totally ω-c.a. degrees indeed capture a wide
class of combinatorial constructions in computability theory, and are naturally definable in
the c.e. degrees.

To capture further combinatorics and definability, Downey and Greenberg [4, 5] extended
the notion of being totally ω-c.a. as follows. For computable ordinals below ε0, we can associate
a canonical effective Cantor Normal Form. That is, if, for example, α < ω3, say, then α is
specified by a triple (n0, n1, n2) representing that α = n0ω

2 + n1ω + n2. If f(x) is α-c.a. then
it would have a ∆0

2 approximation f(x, s) where initially f(x, s + 1) 6= f(x, s) can change n2
many times, and after that it would move to n0ω

2 + (n1 − 1)ω + n′2 and have another n′2
many further changes to move to n0ω

2 + (n1 − 2)n1 + n′′2, etc, with each change on one of
the ordinals allowing a free choice for those right of it. Several natural classical constructions
seems to correlate to levels of the resulting (proper) hierarchy. For instance, ωω captures
embeddings of the 1-3-1 lattice into the c.e. degrees and being totally ω-c.a. captures certain
other configurations, as well as constructions from Kolmogorov complexity. (See [4, 5]).

1.3. Our results using this hierarchy. Downey and Ng [9] did not just prove that not
every c.e. set can be split into a pair of superlow ones. Downey and Ng showed the following:

Theorem 1.3 (Downey and Ng [9]). There is a c.e. degree a such that if a0 ∪ a1 = a in the
c.e. degrees, then one of a0 or a1 is not totally ω-c.a..

In passing, we mention that, in the same paper, Downey and Ng also showed that every
high c.e. degree is the join of two totally ω-c.a. c.e. degrees. This second result extends a
classical theorem of Bickford and Mills [1] who showed that 0′ is the join of two superlow c.e.
degrees. However, in [9] it is also shown that there are (super-)high c.e. degrees that are not
the joins of two superlow degrees.

Thus, if we use the Downey-Greenberg hierarchy for the classification of the complexity of
c.e. sets resulting from an incomparible splitting, we cannot hope to do better than ω2.

In §2, we show that the classical Sacks’ construction proves that a c.e. set A can be split
into a pair of totally ωω-c.a. (low) c.e. sets (see Theorem 2.1).

However, in §3 we find a novel way of proving Sacks’ Splitting in a certain dynamic way
(with perhaps other applications), which allows us to show the following.

Theorem 1.4. Every c.e. set can be split into a pair of low c.e. sets which are totally ω2-c.a.

1.4. Where the injury becomes unbounded. The original Sacks’ Splitting Theorem has
a stronger form.

Theorem 1.5 (Sacks [13]). For each noncomputable c.e. set A and noncomputable ∆0
2 set C

there is a splitting A0tA1 = A with A0 and A1 both of low degree and C 6≤T Ai for i ∈ {0, 1}.

In the final section, we will show that Theorem 1.5 does need a finite injury argument of
“unbounded type”. We prove the following theorem.

Theorem 1.6. Let α < ε0. Then there exist noncomputable c.e. sets A and C such that for
all c.e. splittings A0 tA1 = A of A, if A0 is totally α-c.a. then C ≤T A1.

Hence no level of the Downey-Greenberg Hierarchy suffices to capture this version of Sacks’
Splitting Theorem.

Indeed, we prove that Theorem 1.6 holds for degrees.

Theorem 1.7. Let α < ε0. Then there exist c.e. degrees a and c > 0 such that for all c.e
degrees a0,a1 with a0 ∨ a1 = a, if a0 is totally α-c.a. then c ≤ a1.
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This proof is a slight modification of the proof of Theorem 1.6.
We remark that this is the first example of a classical result which has been shown to need

finite injury of unbounded type, at least as measured by the Downey-Greenberg Hierarchy.

1.5. Conventions. We refer to Soare [16] or the computability section of Downey-Hirschfeldt
[7] as a general reference to our notation and terminology. We tend to use the Lachlan
convention that appending [s] to a parameter, indicates its state at stage s. Uses will be lower
case letters of the functionals. Parameters don’t change from stage to stage unless indicated
otherwise. Uses are monotone in argument and stage number.

2. Splitting a c.e. set into ωω-c.a. c.e. sets

Before we prove our main result we show that, by a straightforward variant of Sacks’ splitting
technique, we can split any c.e. set into totally ωω-c.a. c.e. sets.

Theorem 2.1. For any c.e. set A there is a c.e. splitting A = A0 t A1 such that A0 and A1

are totally ωω-c.a. and low.

Proof. Given a c.e. set A, we have to split A into disjoint low c.e. sets A0 and A1 meeting the
global requirements

Rglobali,e : If ΦAi
e is total then ΦAi

e is ωω-c.a.

for e ≥ 0 and i ≤ 1. We split Rglobali,e into local requirements R2〈e,x〉+i (x ≥ 0) where require-

ment R2〈e,x〉+i attempts to preserve the computation Φ
Ai,s
e,s (x) (whenever this computation is

defined) by restraining numbers < ϕ
Ai,s
e (x) from Ai. I.e., if Φ

Ai,s
e,s (x) ↓ and a number < ϕ

Ai,s
e (x)

enters A at stage s+1 then R2〈e,x〉+i requires that this number is put into A1−i. We will argue
that if we give a requirement higher priority if its index is lesser, then this strategy suffices to
meet the global requirements hence to make A0 and A1 totally ωω-c.a. In order to show this,
we first describe the construction more formally.

W.l.o.g. assume that A is infinite, fix a 1-1 computable function a enumerating A, and let
As = {a(t) : t < s}. The sets A0 and A1 are enumerated in stages where at stage s + 1 we
decide whether a(s) is put into A0 or A1. So Ai,s = {a(t) : t < s & a(t) ∈ Ai}. The restraint
imposed by requirement R2〈e,x〉+i on Ai at stage s+ 1 is defined by

r(2〈e, x〉+ i, s) =

{
ϕ
Ai,s
e (x) if Φ

Ai,s
e,s (x) ↓

0 otherwise.

Then, at stage s+ 1, a(s) is put into A1 if the least n such that a(s) < r(n, s) is even (or if no
such n exists), and a(s) is put into A0 otherwise. Moreover, we call R2〈e,x〉+i an i-requirement
and an i-e-requirement, and we say that requirement R2〈e,x〉+i is injured at stage s + 1 if
a(s) < r(2〈e, x〉 + i, s) and a(s) is enumerated into Ai. (Note that i-requirements impose
restraint on Ai.)

This completes the construction.

Obviously, the sets A0 and A1 are disjoint and c.e. and A = A0 ∪ A1. So A = A0 t
A1. Moreover, just as in the standard proof of Sacks’ Splitting Theorem, it follows by a
straightforward induction on n ≥ 0 that any requirement Rn is injured at most finitely often.
So we may fix sn minimal such that Rn is not injured after stage sn. Then, for n = 2〈e, x〉+ i,

any computation ΦAi,t
e,t (x) existing at a stage t ≥ sn is preserved, hence

(1) ΦAi
e (x) ↑ ⇔ ∀ t ≥ s2〈e,x〉+i (ΦAi,t

e,t (x) ↑).
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So, in particular, the requirements R2〈e,e〉+i ensure that the standard lowness requirements

Q2e+i : ∃∞s(ΦAi,s
e,s (e) ↓) ⇒ ΦAi

e (e) ↓

are satisfied (e ≥ 0, i ≤ 1). Hence the sets A0 and A1 are low.

It remains to show that the global ωω-c.a. requirements Rglobali,e are met. Fix i ≤ 1 and e ≥ 0

such that ΦAi
e is total. Define the canonical computable approximation ψ of ΦAi

e induced by

{ΦAi,s
e,s }s≥0 by letting

ψ(x, s) = Φ
Ai,s′

e,s′ (x) for the least s′ ≥ s such that Φ
Ai,s′

e,s′ (x) ↓.

Then it suffices to define a computable function c : ω × ω → ωω such that, for x, s ≥ 0,

(2) c(x, s+ 1) ≤ c(x, s)

and

(3) ψ(x, s+ 1) 6= ψ(x, s) ⇒ c(x, s+ 1) 6= c(x, s).

The definition of c is based on the following observations where we let nx = 2〈e, x〉+ i.

Claim 1. (a) If ψ(x, s+ 1) 6= ψ(x, s) then Rnx is injured at stage s+ 1.
(b) If a requirement Rn is injured at stage s + 1 then there is a number n′ < n such that
r(n′, s+ 1) = r(n′, s) and a(s) < r(n′, s) hence

(4) |As+1 � r(n
′, s+ 1)| < |As � r(n′, s)|.

(c) If r(n, s+ 1) 6= r(n, s) then r(n, s) = 0 or Rn is injured at stage s+ 1.

Proof. (a) Assume ψ(x, s+ 1) 6= ψ(x, s). Then, by definition of ψ, ψ(x, s) = Φ
Ai,s
e,s (x) ↓ and

either Φ
Ai,s+1

e,s+1 (x) ↑ or ψ(x, s + 1) = Φ
Ai,s+1

e,s+1 (x) ↓. So, in either case, Φ
Ai,s
e,s (x) ↓6= Φ

Ai,s+1

e,s+1 (x).

This implies that r(nx, s) = ϕ
Ai,s
e (x) and Ai,s+1 � ϕ

Ai,s
e (x) 6= Ai,s � ϕ

Ai,s
e (x). So Rnx is injured

at stage s+ 1.
(b) Assume that Rn is injured at stage s + 1. Fix i′ such that Rn is an i′-requirement.

Then, by construction, a(s) is put into Ai′ and there is an (1− i′)-requirement Rn′ such that
n′ < n and a(s) < r(n′, s). Finally, by A1−i′,s+1 = A1−i′,s and r(n′, s) > 0, it holds that

r(n′, s) = ϕ
A1−i′,s
e′ (x′) = ϕ

A1−i′,s+1

e′ (x′) = r(n′, s + 1) for the unique numbers e′, x′ ≥ 0 such
that n′ = 2〈e′, x′〉+ (1− i′).

(c) Assume that r(n, s + 1) 6= r(n, s) and r(n, s) > 0, and fix e′, x′ ≥ 0 and i′ ≤ 1 such

that n = 2〈e′, x′〉 + i′. Then, by r(n, s) > 0, Φ
Ai′,s
e′,s (x′) ↓ and r(n, s) = ϕ

Ai′,s
e′ (x′). By

r(n, s+ 1) 6= r(n, s), this implies that either Φ
Ai′,s+1

e′,s+1 (x′) is undefined or Φ
Ai′,s+1

e′,s+1 (x′) is defined

but ϕ
Ai′,s+1

e′,s+1 (x′) ↓6= ϕ
Ai′,s
e′,s (x′). It follows that a(s) < ϕ

Ai′,s
e′ (x′) = r(n, s) and a(s) is put into

Ai′ at stage s+ 1. So Rn is injured at stage s+ 1.
This completes the proof of Claim 1.

Now, for the definition of the computable function c, we represent the ordinals < ωω by
nonempty finite tuples of nonnegative integers where the (k + 1)-tuple (ak, . . . , a0) represents
the ordinal

k∑
i=0

aiω
i = akω

k + · · ·+ a2ω
2 + a1ω + a0.
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Then c(x, s) is defined by

c(x, s) = (c0(0, s), c1(0, s), c0(1, s), c1(1, s), . . . , c0(nx − 1, s), c1(nx − 1, s))

=
∑

n<nx

(
c0(n, s) · ω2(nx−n)−1 + c1(n, s) · ω2(nx−n)−2

)
where

c0(n, s) =

{
0 if r(n, s) > 0

1 otherwise
and c1(n, s) = |As � r(n, s)|.

(Here and in the following we assume that nx > 0. If nx = 0 then, by Claim 1 (a), ψ(x, s+1) =
ψ(x, s) for all stages s ≥ 0. So (2) and (3) will hold if we let c(x, s) = 0 for all s ≥ 0.)

Obviously, c(x, s) is computable. So it only remains to establish (2) and (3).
For a proof of (2) fix x and s such that c(x, s+1) 6= c(x, s). Choose 2n+i′ minimal such that

i′ ≤ 1, n < nx and ci′(n, s+1) 6= ci′(n, s). It suffices to show that ci′(n, s+1) < ci′(n, s). Note
that requirement Rn is not injured at stage s+1 (namely, otherwise, it would follow by Claim
1 (b) that there is a number n′ < n such that c1(n

′, s+ 1) < c1(n
′, s) contradicting minimality

of 2n + i′). Now distinguish the following two cases. First assume that r(n, s + 1) = r(n, s).
Then c0(n, s+ 1) = c0(n, s) hence i′ = 1. By assumption this implies that

|As+1 � r(n, s)| = ci′(n, s+ 1) 6= ci′(n, s) = |As � r(n, s)|.

As As+1 ⊆ As it follows that ci′(n, s+ 1) < ci′(n, s). Finally, assume that r(n, s+ 1) 6= r(n, s).
Since Rn is not injured at stage s+ 1, it follows by Claim 1 (c) that r(n, s) = 0. So, by case
assumption, r(n, s+1) > 0, and we may conclude that i′ = 0 and c0(n, s+1) = 0 < 1 = c0(n, s).
This completes the proof of (2).

Finally, for a proof of (3), fix x and s such that ψ(x, s + 1) 6= ψ(x, s). Then, by Claim 1
(a) and (b), there is a number n′ < nx such that (4) holds whence c1(n

′, s+ 1) < c1(n
′, s). By

definition of c, this implies c(x, s+ 1) 6= c(x, s). So (3) holds.

This completes the proof of Theorem 2.1. �

3. The ω2-proof

Theorem 3.1. Given a c.e. set A there are c.e. sets A0 and A1 such that A = A0 t A1 and
A0 and A1 have totally ω2-c.a. degree.

Proof. This proof is an infinite injury, although we will not be using a tree to organize the
construction. Rather, we will be using a mechanism similar to e-states used in the maximal
set construction.

Notation. We fix a 1-1 enumeration of A, and let as be the element enumerated into A at
stage s. We write (e, x, i) to stand for the subrequirement that wants to restrain the use of
Φe(Ai;x). We also write ϕe(x, i)[s] to be the use of the computation Φe(Ai;x) at stage s. Two
triples (e, x, i) and (e′, x′, i′) are said to be of the same type if i = i′.

Instead of ordering the triples (e, x, i) by priority, we will instead bunch up several triples
of the same type and view them to be of the same priority. In order to facilitate this, we will
introduce the notion of blocks. A block Bik is a collection of triples of type i who are assigned
the same priority. However, we will differentiate the priority between different blocks. The
priority ordering between different blocks are: B00 < B10 < B01 < B11 < B02 < B12 < · · · . This
priority ordering is fixed, but the contents of each block will change. Bin will only contain
triples of the form (e, x, i) where e ≤ n. At each stage s, we denote rin[s] to be the maximum

value of ϕe(x, i) where (e, x, i) ∈ Bin, and Rin to be the maximum value of ri
′
n′ where Bi′n′ ≤ Bin.

If P is a parameter then P [s] denotes the value of P at the beginning of stage s.
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We denote Conv(Bin) for a block Bin to be a finite string of length n + 1 over the alphabet
set {∞, f}, defined such that Conv

(
Bin
)

(e) =∞ if and only if Bin contains a triple of the form
(e, x, i), for each e ≤ n. We order these strings lexicographically, where Conv(B) < Conv(B′)
if Conv(B) is lexicographically to the left of Conv(B′) (with the usual convention of ∞ being
to the left of f ; the value ∞ standing for “total” and value f for “partial”). To initialize a
block Bin means to make it empty.

We shall need to keep track of the totality of Φe(Ai;x); the standard way of doing this is
to define the parameter l(e, i)[s] = largest x < s such that Φe(Ai; y)[s] ↓ for every y < x. At
every stage s, and i = 0, 1, we let δi[s] be a string of length s over {∞, f} defined by induction
on e < s: Suppose δi[s] � e has been defined. We set δi[s](e) = ∞ if and only if l(e, i)[s] > t,
where t < s is the largest stage such that δi[t] ⊇ (δi[s] � e)̂∞ or δi[t] < δi[s] � e. (We take
t = 0 if this does not exist).

Discussion of the proof. We have seen in §2 that the standard proof of Sacks’ Splitting Theorem
will produce a set splitting A0 t A1 of A where A0 and A1 are of totally ωω-c.a. degree. In
order to improve this to ω2-c.a., we shall have to organize the priority of the requirements
dynamically. The basic unit in the construction is that of a triple (e, x, i), which represents
the (sub)-requirement that wants to restrain the use of a convergent Φe(Ai;x). Obviously
two triples (e, x, i) and (e′, x′, i′) are in direct conflict only if i 6= i′. In order to fully exploit
this fact, we will place different triples of the same type in a block. Since triples of the same
type are not in direct conflict with each other, we will consider all triples in the same block
to be of the same relative priority, and we will only set priority between different blocks. The
priority ordering between blocks is fixed, but the elements of each block will change as the
construction proceeds.

Let’s first consider a single pair of requirements, Φ0(A0) and Φ0(A1), and assume both to
be total. Each block Bin contains finitely many triples of the form (0, x, i), with Ai-restraint
Rin. To illustrate, let’s fix i = 0 and some x, and count the number of changes to Φ0(A0;x).
Suppose that (0, x, 0) ∈ Bin[s1] for some n, where s1 is the first stage we begin monitoring
Φ0(A0;x). If a number as enters A, we must enumerate as immediately into either A0 and

A1. This decision is made based on the highest priority block Bi′n′ that would be injured by
as entering Ai′ , and we would put as into A1−i′ instead. Doing so will obviously injure all

1− i′-blocks of priority lower than that of Bi′n′ , so we must initialize them.
Thus in order for the computation Φ0(A0;x) to be injured, we must see some number

as < R1
n−1[s1] enter A. Assuming that B10, · · · ,B1n−1 are not injured, the restraint R1

n−1 is not

increased after s1, and thus the number of times Φ0(A0;x) can be injured is at most R1
n−1[s1].

An ordinal bound of ω will suffice for the number of mind changes in approximating Φ0(A0;x),
provided that B10, · · · ,B1n−1 are not injured.

What happens if B1n−1 is injured? This will potentially cause R1
n−1 to increase to, say,

R1
n−1[s2] > R1

n−1[s1], which means that the number of injuries to Φ0(A0;x) will now be

bounded by R1
n−1[s2] > R1

n−1[s1]. This means that the ordinal bound for the injuries to

Φ0(A0;x) will have to be larger than ω. B1n−1 can be injured if a number as < R0
n−1[s1] enters

A, and each time B1n−1 is injured, the ordinal bound for the number of injuries to Φ0(A0;x)

will have to be increased. Thus, assuming that B00, · · · ,B0n−1 are never injured, the ordinal

bound for the number of injuries to Φ0(A0;x) can be set as ω ·R0
n−1[s1].

The reader should now be able to observe a pattern. With a fixed assignment of triples
to blocks (as in Sacks splitting theorem), we see that the bound ω · R0

n−1[s1] will have to be

revised if B0n−1 is injured by preserving A1 � R1
n−2. Thus, the straightforward bound is ωω.

In order to get a better bound, we will need to have a dynamic assignment of triples to
blocks. Coming back to our example above, the action that had caused us to go beyond
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ω2 is the injury to B0n−1, which allowed R0
n−1 to increase past its original value of R0

n−1[s1].

The solution is to combine all the blocks B0n−1,B0n,B0n+1, · · · whenever B0n−1 is injured so

that every triple (0, y, 0) introduced into the construction after s1 − 1 is now in B0n−1. For

instance, when B0n−1 is injured after stage s1 and R0
n−1 is increased beyond R0

n−1[s1], we would

transfer (0, x, 0) from B0n to B0n−1. Now the current restraint held by B0n−2 is still R0
n−2[s1]

(otherwise we would have already transferred (0, x, 0) to B0n−2), and so the original bound of

ω · R0
n−1[s1] > ω · R0

n−2[s1] will still work for Φ0(A0;x). Obviously, if B0n−2 is later initialized

and R0
n−2 is increased beyond R0

n−2[s1], we will transfer (0, x, 0) to B0n−2.
It is easy to see that under this revised strategy, we can have ω2 as the bound for the

number of injuries to Φ0(A0) and Φ0(A1). Each block is initialized only finitely often and has
a stable state with finitely many triples. Thus, if there is only a single Φ on each side, we will
have no additional difficulties.

The main difficulty in this proof comes from considering multiple Φs on each side. For
instance, let us consider Φ0(A0), Φ1(A0) and Φ0(A1), so that 0-blocks contain triples of the
form (0, x, 0) and (1, x′, 0), and 1-blocks contain triples of the form (0, x′′, 1). Suppose that
both Φ0(A0) and Φ1(A0) are total, but the totality of Φ1(A0) is revealed much faster than
that of Φ0(A0). Let n be the least such that B0n currently does not contain any triple (0, x, 0)
for x > x0. This scenario will occur if Φ0(A0;x0 + 1) has not yet converged and so R0

n will
have to be computed without using Φ0(A0). Assume also that Φ1(A0) is currently looking
total. We will have to fill the blocks B0n,B0n+1, · · · with (1, x′, 0) triples, since it could be that

Φ1(A0) is total but Φ0(A0) is not. Once a triple (1, x1, 0) is initially put into B0n+1 at some

stage s1, the ordinal bound of ω ·R0
n[s1] will be declared (and cannot be increased later if we

want Φ1(A0) to be ω2-c.a.) If Φ0(A0;x0 + 1) later converges, we will have to put (0, x0 + 1, 0)
into B0n, the first 0-block not containing a (0, x, 0)-triple. Unfortunately, this will increase R0

n

beyond R0
n[s1] and so the bound previously declared for (1, x1, 0) ∈ B0n+1 will be too small and

will have to be increased. A quick calculation shows that a bound of ω3 will suffice without
modifying the above strategy.

To overcome the problem above, the straightforward solution is to combine the elements in
the blocks B0n,B0n+1, · · · when Φ0(A0, x0 + 1) converges and (0, x0 + 1, 0) is added to B0n. In

this way, the triple (1, x1, 0) will be transferred from B0n+1 to B0n when (0, x0 +1, 0) is added to

B0n. Since we assumed that R0
n−1[s1] already includes the use of a convergent Φ0(A0;x0)[s1],

it will never be increased again later due to Φ0(A0) looking total, and therefore the previously
declared bound of ω · R0

n[s1] > ω · R0
n−1[s1] for Φ1(A0;x1) will still work after transferring

(1, x1, 0) to B0n. The motif here is to transfer all triples from ∪k≥nB0k into B0n whenever R0
n

increases.
Unfortunately, the straightforward solution given above does not solve the problem com-

pletely, and there are further subtleties to be considered. The problematic case is when Φ0(A0)
and Φ1(A0) are both total, but the totality of each functional alternates between being quickly
and slowly revealed. Recall the definition of Conv

(
B0n
)

from the previous section. Let’s con-

sider a scenario where Conv
(
B0k
)
⊃ ∞∞ for all k < n, and where Conv

(
B0n
)
⊃ f∞. Then

while waiting for Φ0(A0;x0 + 1) to converge, we will have to add (1, x1, 0) to B0n+1 for some
large x1. This can later be injured due to elements entering A0, so that when Φ0(A0;x0 + 1)
finally converges later and (0, x0 + 1, 0) is added to B0n, we will have to transfer all triples
in lower priority blocks into B0n. Unfortunately at this time, it could be that Φ1(A0;x1) is
currently undefined. This means that when Φ1(A0;x1) later converges, the restraint R0

n of
the block B0n will have to be increased. However, Φ1(A0;x1) can now take a very long time
to converge again, and in the meantime, Φ0(A0) will look total. This means that we must
add (0, x2, 0) to the block B0n+1 for large x2, as Φ0(A0) cannot afford to wait for Φ1(A0;x1)
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to re-converge. Now when Φ1(A0;x1) finally converges again, R0
n will increase further, which

means that (0, x2, 0) will have to be transferred to B0n, during which Φ0(A0;x2) may be un-
defined. The functionals Φ0(A0) and Φ1(A0) can alternate between quickly converging and
slowly converging, so that in the end, we are forced to transfer almost every (0, x, 0) and
(1, x′, 0) to B0n, making the block infinite.

The above problem can be solved if we allow for infinite injury between the requirement
approximating Φ0(A0) and the requirement approximating Φ1(A0). In order to get this to
work we will need to have two different versions of the requirement approximating Φ1(A0);
one that believes that Φ0(A0) is total (and hence Conv

(
B0k
)

(0) = ∞ for all k), and a second

version that believes that Φ0(A0) is not total (and hence Conv
(
B0k
)

(0) = f for cofinitely many

k). The first version will delay defining the bound for Φ1(A0) on a block B0k until Φ0(A0) has
shown itself to be total in the block, i.e. Conv

(
B0k
)

(0) = ∞. The second version will work

only with the blocks B0k where Conv
(
B0k
)

(0) = f , and is initialized each time Φ0(A0) looks

total. The actions of these different versions will be organized by keeping track of Conv
(
B0k
)
.

There are no additional difficulties beyond certain technical details which will be addressed in
the formal construction.

Construction. We initially set all blocks to be empty. At stage s > 0, we do the following:

(I) For each i = 0, 1, we do the following. Let n be the least such that Conv
(
Bin
)

[s] > δi[s].

Initialize Bik for all k ≥ n. For each e ≤ n such that δi[s](e) = ∞ and for each triple
(e, x, i) that is not currently in any block, where x < l(e, i)[s], we put (e, x, i) into Bin.
We say that we act for Bin. If n does not exist, do nothing at this step.

(II) Let Bin be the highest priority block such that as < Rin. Enumerate as into A1−i, and
initialize B1−im for all m such that B1−im > Bin. If Bin does not exist, enumerate as into
A0.

Verification. Obviously, A0, A1 is a set splitting of A. We now verify that A0 and A1 have
totally ω2-c.a. degrees. First of all, we observe that for any triple (e, x, i), any stage s and any
block Bin, if (e, x, i) ∈ Bin[s] then Φe(Ai;x)[s] ↓. Furthermore, for any i, n,m, s, if n < m then
Conv

(
Bin
)

[s] < Conv
(
Bim
)

[s] or Conv
(
Bin
)

[s] ⊂ Conv
(
Bim
)

[s].

Lemma 3.2. Suppose that we act for Bin at stage s. Then Conv
(
Bin
)
⊆ δi[s] immediately after

the action.

Proof. Suppose not. Then there is a least e ≤ n such that Conv
(
Bin
)

(e) = f and δi[s](e) =∞.

This means that there is some k < n such that (e, x, i) ∈ Bik[s], where x = l(e, i)[s] − 1. Let
t < s be the greatest stage where we acted for Bik and added (e, x, i) to Bik. At stage t we
must have δi[t] < Conv

(
Bik
)

[t+ 1] or δi[t] ⊇ Conv
(
Bik
)

[t+ 1]. By the maximality of t, we have

Conv
(
Bik
)

[t + 1] = Conv
(
Bik
)

[s], and since we chose to act for Bin rather than Bik at stage s,

it means that δi[s] 6< Conv
(
Bik
)

[s], which must mean that δi[t] � e + 1 ≤ δi[s] � e + 1. Since
δi[s](e) =∞, this must mean that l(e, i)[s] > t > x, a contradiction. �

Lemma 3.3. Each block is initialized at only finitely many stages.

Proof. If l(0, 0) > 0 at some stage s > 0, then B00 = {(0, x, 0) | x < l(0, 0)} forever, otherwise
B00 = ∅ forever. So, B00 is initialized at most once. Now suppose that all blocks of priority

higher than Bin is no longer initialized after stage s. Then we have ri
′
k [t] = ri

′
k [s] for every t > s

and every block Bi′k < Bin. This means that Bin can be initialized under step (II) only finitely
often after stage s.

Suppose that Bin is initialized under step (I) infinitely often. Pick the least e such that
there are infinitely many stages t > s where δi[t] � e = Conv

(
Bin
)

[t] � e and δi[t](e) = ∞ and
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Conv
(
Bin
)

[t](e) = f . By the minimality of e, we see that Conv
(
Bin
)

[t](e′) is eventually stable

for every e′ < e. Now let t1 > t0 > s be two stages such that δi[tk] � e = Conv
(
Bin
)

[tk] � e and

δi[tk](e) =∞ and Conv
(
Bin
)

[tk](e) = f for k = 0, 1. Since we can assume that Conv
(
Bin
)

[t0] �
e = Conv

(
Bin
)

[t1] � e, we see that δi[t0] � e = δi[t1] � e and therefore l(e, i)[t1] > t0, and thus

(e, t0, i) will be added to Bin under step (I) at stage t1.
We now argue that (e, t0, i) will be in Bin[t] for every t > t1. Suppose (e, t0, i) is removed

from Bin by the action at some stage t2 > t1. This must be under Step (I); however, since
(e, t0, i) ∈ Bin[t2], we have Conv

(
Bin
)

[t2] � e+ 1 =
(
Conv

(
Bin
)

[t1] � e
) ̂∞. By the minimality

of e, δi[t2] cannot be to the left of Conv
(
Bin
)

[t1] � e, since δi[t2] must be to the left of

Conv
(
Bin
)

[t2], it follows that δi[t2](e) =∞, and therefore t0 < l(e, i)[t2]. But this means that

we would put (e, t0, i) back into Bin under Step (I) during stage t2, so that (e, t0, i) ∈ Bin[t2+1].
Thus, (e, t0, i) ∈ Bin[t] for every t > t1. This means that Conv

(
Bin
)

[t](e) =∞ for almost every
t, which contradicts the assumption on e. �

Let δ̂i = lim infs δi[s]. We will show that A0 and A1 have totally ω2-c.a. degree. We
fix e and i such that Φe(Ai) is total, and let s0 be a stage large enough so that ∀t ≥ s0,

δi[t] � e+ 1 ≥ δ̂i � e+ 1, and that the blocks Bi0, · · · ,Bie are never again initialized after s0. By

checking the definition of δi, we can see easily that δ̂i(e) =∞.

Lemma 3.4. For every n > s0, lims Conv
(
Bin
)

[s] � e+ 1 = δ̂i � e+ 1.

Proof. Fix n > s0. By Lemma 3.2, each time we act for Bin under Step (I), we will make

Conv
(
Bin
)
� e+ 1 ≥ δ̂i � e+ 1. By Lemma 3.3, lims Conv

(
Bin
)

[s] � e+ 1 exists. Suppose for a

contradiction that lims Conv
(
Bin
)

[s] � e+ 1 > δ̂i � e+ 1. But this means that we will infinitely

often act for Bin under Step (I), a contradiction. �

The task for the rest of this proof is to define computable functions ψ(x, s), c0(x, s) and
c1(x, s) so that for every x, lims ψ(x, s) = Φe(Ai;x) and for every x, s, we have ω · c0(x, s) +
c1(x, s) ≥ ω · c0(x, s + 1) + c1(x, s + 1) and ψ(x, s) 6= ψ(x, s + 1) ⇒ ω · c0(x, s) + c1(x, s) >
ω · c0(x, s+ 1) + c1(x, s+ 1).

For the rest of this proof we fix an x large enough such that (e, x, i) is never in ∪j≤s0Bij
(by Lemma 3.3 there are cofinitely many such x). Let nx[s] be the number n such that

(e, x, i) ∈ Bin[s] and where Conv
(
Bin
)

[s] � e+ 1 = δ̂i � e+ 1. If n cannot be found let nx[s] ↑.
Lemma 3.5. There are infinitely many s such that nx[s] ↓.
Proof. Fix an arbitrarily large stage s such that l(e, i)[s] > x, and the construction acts for

Bin for some n > s0, and where Conv
(
Bik
)

[s] � e + 1 = δ̂i � e + 1 for all k with s0 < k < n.

We also assume that Conv
(
Bin
)

[s + 1] � e + 1 = δ̂i � e + 1. This stage s can be found since
lims l(e, i)[s] =∞ and by applying Lemma 3.4.

When acting for Bin at stage s, we cannot have (e, x, i) ∈ Bik[s] for any k ≤ s0 by the
assumption on the largeness of x. If (e, x, i) ∈ Bik[s] for any s0 < k < n then we have
nx[s] ↓= k. Otherwise, the construction will be able to add (e, x, i) to Bin in Step (I), and
since Bin is not initialized in Step (II), we have nx[s+ 1] ↓= n. �

We let s1 ≥ s0 be the first stage where nx[s1] ↓ and where there is some s′1 such that

δi[s
′
1] � e + 1 = δ̂i � e + 1 and x < s′1 < s1. The stage s1 exists by Lemma 3.5. Obviously,

nx[s] ≥ e for every s where it is defined.

Lemma 3.6. For every t > s′ > s1, and n, if Conv
(
Bin
)

[s′] � e+ 1 > δ̂i � e+ 1 and (e, x, i) is
not in any block at the beginning of stage s′, and t > s′ is the least such that nx[t] ↓, we will
have nx[t] ≤ n.
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Proof. We can assume, without loss of generality, that there is no stage v and no m ≤ n such
that s′ < v < t, Conv

(
Bim
)

[v] � e + 1 > δ̂i � e + 1 and (e, x, i) is not in any block at the
beginning of stage v.

Now let s′′ be the least stage such that s′′ ≥ s′ and δi[s
′′] � e+ 1 = δ̂i � e+ 1.

Claim 3.7. For any stage s′′′ and k with s′ ≤ s′′′ ≤ s′′ and (e, x, i) ∈ Bik[s′′′] we must have

Conv
(
Bik
)

[s′′′] � e+ 1 > δ̂i � e+ 1.

Proof. If s′′′ exists then s′′′ > s′ and we can therefore assume that s′′ > s′ as well. Note that
(e, x, i) must be added to Bik at some maximal stage v such that s′ ≤ v < s′′′; this same action
will cause Conv

(
Bik
)

[v + 1] � e + 1 = δi[v] � e + 1 (by Lemma 3.2). Since v is maximal, we

have Conv
(
Bik
)

[v + 1] � e + 1 = Conv
(
Bik
)

[s′′′] � e + 1, and since s′ ≤ v < s′′′ ≤ s′′, we also

have δi[v] � e+ 1 > δ̂i � e+ 1 by the minimality of s′′. �

We now claim that s′′ + 1 = t. Claim 3.7 tells us that t ≥ s′′ + 1. We now verify that
nx[s′′+ 1] ↓, which will imply that s′′+ 1 ≥ t. Since we have Conv

(
Bin
)

[s′] � e+ 1 > δ̂i � e+ 1,

by the minimality of s′′, we have δi[s
′′] < Conv

(
Bin
)

[s′′]. Thus the construction will act for Bim
at stage s′′, for some m ≤ n. Since s′′ > s0 we must have m > e. Since δi[s

′′](e) = δ̂i(e) =∞,
we conclude that l(e, i)[s′′] > s′1 > x. Therefore, when acting for Bim at stage s′′, we will add
(e, x, i) to Bim, unless (e, x, i) ∈ Bik[s′′] for some k < m. If this is the case, then by Claim 3.7,

we must have Conv
(
Bik
)

[s′′] � e + 1 > δ̂i � e + 1 = δi[s
′′] � e + 1; which means that we would

have acted for Bik instead of Bim at stage s′′, a contradiction.
This contradiction shows that when acting for Bim at stage s′′ we will successfully add

(e, x, i) to Bim. We will not initialize Bim in Step (II) at stage s′′ by the assumption on s′ in

the first line of this proof. By Lemma 3.2 we have Conv
(
Bim
)

[s′′ + 1] � e+ 1 = δ̂i � e+ 1. So
therefore, we conclude that t = s′′ + 1 and nx[t] = m ≤ n. �

Lemma 3.8. For every t > s ≥ s1, if nx[t] ↓ and nx[s] ↓ then nx[t] ≤ nx[s].

Proof. Fix t > s ≥ s1 such that nx[t] ↓ and nx[s] ↓. Let n = nx[s]. We may clearly
assume that Bin is initialized at some least stage s′ such that s ≤ s′ < t. We also assume
that t is the least stage greater than s′ such that nx[t] ↓. By the minimality of s′ we have

Conv
(
Bin
)

[s′] � e+ 1 = δ̂i � e+ 1. There are three possibilities for what might happen at stage
s′.

First, suppose that at stage s′ we did not act for Bim for any m ≤ n. This means that Bin did
not get initialized in Step (I), but was initialized in Step (II). Thus, Conv

(
Bin
)

[s′+ 1] = fn+1

and (e, x, i) will not be in any block at the beginning of stage s′ + 1, so apply Lemma 3.6 to
conclude that nx[t] ≤ n = nx[s].

Second, suppose that at stage s′ we acted for Bim for some m ≤ n, which is then initialized
under Step (II). In that case, regardless of whether (e, x, i) is transferred to Bim during Step
(I), we will still have Conv

(
Bim
)

[s′+1] = fm+1 and (e, x, i) is not in any block at the beginning
of stage s′ + 1, so we can still apply Lemma 3.6 to conclude that nx[t] ≤ m ≤ n = nx[s].

Lastly, suppose that at stage s′ we acted for Bim for some m ≤ n, and Bim is not initialized
under Step (II). Since m ≤ n, we see that Conv

(
Bim
)

[s′] � e + 1 ≤ Conv
(
Bin
)

[s′] � e + 1 =

δ̂i � e + 1. Since we acted for Bim at s′, we must have δi[s
′] ⊇ δ̂i � e + 1. Now since

δi[s
′](e) = δ̂i(e) = ∞, we conclude that l(e, i)[s′] > s′1 > x. This means that while acting for

Bim at stage s′, we will put (e, x, i) into Bim. Since Bim is not initialized in Step (II), again, by
Lemma 3.2, we have t = s′ + 1, and nx[t] = m ≤ n = nx[s]. �

We next show that after stage s1, all i-blocks of priority higher than Binx must be holding
the original restraint from stage s1:
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Lemma 3.9. For every s ≥ s1 such that nx[s] ↓, and every k < nx[s], Rik[s] = Rik[s1].

Proof. Fix s ≥ s1 such that nx[s] ↓ and some k < nx[s] such that Rik[s] 6= Rik[s1]. This means
that there is some stage u such that s1 ≤ u < s and Bik is initialized at stage u. We fix the
least k < nx[s] which is initialized at some such u, and for this k, we fix the largest u. If Bik
is initialized in Step (II) at stage u, then Conv

(
Bik
)

[u+ 1] � e+ 1 = fk+1. By the minimality
of k, (e, x, i) is not in any block at the beginning of stage u+ 1, so we can apply Lemma 3.6
and Lemma 3.8 to conclude that nx[s] ≤ k, a contradiction. Thus we can assume that Bik is
not initialized by step (II) at stage u.

In Step (I) of stage u, if we had acted for some Bik′ for k′ < k, then regardless of whether
we added (e, x, i) to Bik′ we cannot have (e, x, i) ∈ Bik′ [u + 1] by the minimality of k. Hence
(e, x, i) cannot be in any block at the beginning of stage u + 1, and so we can apply Lemma
3.6 again, together with Lemma 3.8 to conclude that nx[s] ≤ k, a contradiction. Thus, we
assume that we had acted for Bik in Step (I) of stage u.

Suppose for a contradiction that δi[u] � e + 1 = δ̂i � e + 1. Since u ≥ s1 > s′1 > x, and
since δi[u](e) = ∞, we conclude that l(e, i)[u] > s′1 > x. Since we assume that Bi0, · · · ,Bie
are already stable, we have e < k. As (e, x, i) cannot be in Bik′ [u] for any k′ < k, we will
add (e, x, i) to Bik during Step (I). Since Bik is not initialized by Step (II), we conclude that
(e, x, i) ∈ Bik[u+ 1], contradicting the maximality of u.

This contradiction says that δi[u] � e+ 1 > δ̂i � e+ 1. By Lemma 3.2 and the fact that Bik
is not initialized in Step (II), we see that Conv

(
Bik
)

[u+ 1] � e+ 1 > δ̂i � e+ 1. Again, (e, x, i)

cannot be in any block at the beginning of stage u + 1, otherwise it must be in Bik[u + 1],
contradicting the maximality of u. Apply Lemma 3.6 and Lemma 3.8 again to conclude that
nx[s] ≤ k, a contradiction. �

Now we are ready to define c0(x, s), c1(x, s) and ψ(x, s). Let Qik[s] = number of elements

x < Rik[s] such that x 6∈ A[s], and define Q1−i
k [s] similarly. We define Qi−1[s] = Q1−i

−1 [s] = 0.

For s < s1 we define c1(x, s) = ψ(x, s) = 0, and c0(x, s) = n0 · Rin0−1[s1] · 2
(n0+1)2 , where

n0 = nx[s1]. If s ≥ s1 and nx[s] ↑ then we define c0(x, s) = c0(x, s− 1), c1(x, s) = c1(x, s− 1)
and ψ(x, s) = ψ(x, s − 1). Now suppose that s ≥ s1 and nx[s] ↓= n. Let m be the largest
such that B1−im < Bin (so that m = n if i = 1 and m = n − 1 if i = 0). We update according
to the following rules:

• Set c1(x, s) = Q1−i
m [s].

• Set ψ(x, s) = Φe(Ai;x)[t] where t ≥ s is the least such that nx[t] ↓ and Φe(Ai;x)[t] ↓.
• Decrease c0(x, s) by 1 if s > s1 and one of the following holds:

– c1(x, s) > c1(x, s
′),

– nx[s] < nx[s′], or
– B1−im is initialized at some stage u with s′ ≤ u < s,

where s′ < s is the largest such that nx[s′] ↓. Otherwise, keep c0(x, s) = c0(x, s− 1).

We will only care about the values of c0(x, s), c1(x, s) and ψ(x, s) for s ≥ s1. Notice that s0 is
fixed for Φe(Ai), and s1 can be found effectively in x. Therefore, |c0|, c1 and ψ are computable
functions. Note that ψ is total since Φe(Ai) is total.

Clearly, lims≥s1 ψ(x, s) = Φe(Ai;x) by Lemma 3.5.

Lemma 3.10. For any s ≥ s1, if ψ(x, s) 6= ψ(x, s + 1) then either c0(x, s) 6= c0(x, s + 1) or
c1(x, s) 6= c1(x, s+ 1).

Proof. Let s ≥ s1 and let s′ be largest such that s1 ≤ s′ ≤ s and n = nx[s′] ↓. We may also
assume that nx[s+ 1] ↓, and by Lemma 3.8, n ≥ nx[s+ 1]. Let’s suppose for a contradiction
that c0(x, s) = c0(x, s+ 1) and c1(x, s) = c1(x, s+ 1). This implies that nx[s+ 1] = nx[s′] = n,
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B1−im is not initialized at any stage u with s′ ≤ u ≤ s, and Q1−i
m [s+ 1] = Q1−i

m [s′]. Notice that
if i = 0 and n = 0 then B1−im is not defined, but the same argument below still holds.

We now consider different cases. First, suppose that that Bin is initialized in Step (II) at
some stage u where s′ ≤ u ≤ s. Then this means that au < R1−i

m [u] = R1−i
m [s′] (since Bim

is not initialized), which in turn means that Q1−i
m [s′] 6= Q1−i

m [s + 1], contrary to one of our
assumptions. So this first scenario is impossible.

Second, suppose we act for Bik at some stage u where s′ ≤ u ≤ s and some k < n. Fix k
with the least corresponding u. By the minimality of u, we must have Conv

(
Bik
)

[u] � e+ 1 =

Conv
(
Bik
)

[s′] � e+ 1 ≤ Conv
(
Bin
)

[s′] � e+ 1 = δ̂i � e+ 1. Since we acted for Bik at stage u, we

must have δi[u] ⊃ δ̂i � e + 1, which implies that (e, x, i) must be put into Bik by this action.
Since Bik isn’t initialized in Step (II) of stage u (otherwise the first scenario above holds), this
implies that (e, x, i) ∈ Bik[u + 1], which means that nx[u + 1] ↓= k < n. Since u + 1 ≤ s + 1,
this contradicts Lemma 3.8. So this second scenario is also impossible.

Third, suppose we act for Bin at some stage u where s′ ≤ u ≤ s. Then the same argument
as for the second scenario tells us that u = s (by the maximality of s′), and after acting for
Bin at stage u = s, we will also put (e, x, i) back into Bin.

We conclude that if Bin is initialized between s′ and s, it can only be in Step (I) of stage
s, where this action will also put (e, x, i) into Bin. This means that in Step (II) of every
stage between s′ and s, we have (e, x, i) ∈ Bin. Since ψ(x, s + 1) 6= ψ(x, s′), we must have
Φe(Ai;x)[s′] ↓, and hence there must be some least stage t such that s′ ≤ t ≤ s and at is
enumerated into Ai by Step (II) of the construction at stage t, where at is below the use
of Φe(Ai;x)[s′]. But during Step (II) of stage t, we have (e, x, i) ∈ Bin, which means that
at < R1−i

m [s′], which in turn means that Q1−i
m [s′] 6= Q1−i

m [s + 1], contradicting one of our
assumptions. Thus we conclude that either c0(x, s) 6= c0(x, s+1) or c1(x, s) 6= c1(x, s+1). �

Lemma 3.11. For every s, c0(x, s) ≥ 0.

Proof. Suppose that s′ and s are two stages such that s1 ≤ s′ < s+ 1, n = nx[s′] = nx[s+ 1]
and where A[s′] � Rin0−1[s1] = A[s+ 1] � Rin0−1[s1] and s′ ≤ s is the largest such that nx[s′] ↓.
Suppose that c0(x, s

′) 6= c0(x, s + 1). If B1−im is initialized under Step (II) at some stage u
with s′ ≤ u ≤ s; then au < Rin−1[u] = Rin−1[s1], by Lemma 3.9, contrary to the assumptions.

On the other hand, if B1−im is not initialized at any stage u with s′ ≤ u ≤ s then obviously
R1−i
m [s′] = R1−i

m [s+ 1] and so Q1−i
m [s′] ≥ Q1−i

m [s+ 1], which means that c0(x, s
′) = c0(x, s+ 1),

a contradiction. Hence Bim is initialized under Step (I) at some stage u where s′ ≤ u ≤ s.
Since Bim is initialized under Step (I) but never under Step (II) between s′ and s, we see that
Conv

(
Bik
)

[s′] > Conv
(
Bik
)

[s+ 1] for the least k ≤ m such that Bik is acted on between s′ and
s.

This says that so long as nx[s] and A[s] � Rin0−1[s1] do not change, the value of c0(x, s) can

decrease at most 2·22 · · · 2(m+1) < 2(n0+1)2 many times. Since c0(x, s1) = n0·Rin0−1[s1]·2
(n0+1)2 ,

we conclude that c0(x, s) ≥ 0 for every s. �

This concludes the proof of Theorem 3.1. �

4. Unbounded type

Theorem 4.1. Let α < ε0. There are a c.e. set A and a noncomputable c.e. set C, such that
if A = A0 tA1 is a c.e. splitting of A, and A0 is totally α-c.a. then C ≤T A1.

Before we give the proof of the theorem, we first isolate the property of totally α-c.a. sets
to be used, where we call a total computable function f : ω×ω → ω a computable convergent
approximation if, for any x ≥ 0, lims→∞ f(x, s) < ω exists.
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Lemma 4.2. Let α < ε0. There is a uniformly computable sequence of computable convergent
approximations {fi}i≥0 such that, for any total α-c.a. function g there is an index i such that
fi converges to g, i.e., g(x) = lims→∞ fi(x, s) for all numbers x ≥ 0.

Proof. In order to avoid technicalities, we give the proof for α = ω2. The general case is
obtained by a similar argument using the fact that any ordinal α < ε0 has an effective Cantor
normal form (see Reference).

Call a triple (f, k, p) of total computable functions of type ω × ω → ω a computable ω2-
approximation (of g) if (f converges to g and), for any numbers x and s, the following hold.

(i) If f(x, s+ 1) 6= f(x, s) then (k(x, s+ 1), p(x, s+ 1)) 6= (k(x, s), p(x, s)), and
(ii) if (k(x, s+1), p(x, s+1)) 6= (k(x, s), p(x, s)) then either k(x, s+1) < k(x, s) or k(x, s+

1) = k(x, s) and p(x, s+ 1) < p(x, s).

By viewing k(x, s) and p(x, s) as the coefficients of the Cantor normal form of the ordinal
o(x, s) = k(x, s) · ω + p(x, s) < ω2, the functions k and p assign an ordinal o(x, s) < ω2 to
each value f(x, s) such that whenever f(x, s) changes, i.e., f(x, s + 1) 6= f(x, s), then the
corresponding ordinal decreases, i.e., o(x, s+ 1) < o(x, s). So f is a convergent approximation
and, by definition, a function g is ω2-c.a. if and only if there is a computable ω2-approximation
(f, k, p) of g. Moreover, given a computable ω2-approximation (f, k, p) of a function g, by
slowing down the approximation we obtain a primitive recursive ω2-approximation of g, i.e., a
computable ω2-approximation (f̂ , k̂, p̂) of g where the functions f̂ , k̂, p̂ are primitive recursive
(see Reference). Finally, since there is a computable numbering of the primitive recursive
functions, we easily obtain a computable sequence {(fi, ki, pi)}i≥0 of all primitive recursive ω2-
approximations. So, by dropping the parameters ki and pi, this gives the desired computable
sequence {fi}i≥0 of computable convergent approximations providing approximations of all
total ω2-c.a. functions. �

Proof of Theorem 4.1. We construct the desired c.e. sets A and C by a tree argument. It
suffices to meet the noncomputability requirements

Pn : C 6= Wn

and the (global) splitting requirements

Rglobale : If Xe ∪ Ye = A and Xe is totally α-c.a. then C ≤T Ye.
for n ≥ 0 and e ≥ 0, respectively, where {(Xe, Ye)}e≥0 is a computable numbering of all
disjoint pairs of c.e. sets.

In order to meet the global requirement Rglobale we define a total function ge ≤T Xe and
ensure that C ≤T Ye provided that Xe ∪ Ye = A and ge is α-c.a. In fact, since this task is too
complex to be handled directly, we break it up into the local splitting requirements

R〈e,i〉 : If Xe ∪ Ye = A and if fi converges to ge then C ≤T Ye.
(i ≥ 0) where {fi}i≥0 is a computable sequence of computable convergent approximations as
in Lemma 4.2.

Let As and Cs be the finite parts of A and C, respectively, enumerated by the end of stage s
(where A0 = C0 = ∅), and fix uniformly computable enumerations {Xe,s}s≥0 and {Ye,s}s≥0 of
the c.e. sets Xe and Ye, respectively (e ≥ 0). We define uniformly computable approximations
ge(z)[s] of the functions ge (e ≥ 0), where ge(z)[s] is the value of ge(z) at the end of stage s,
and where we obey the following rules (for e, z, s ≥ 0).

(g0) ge(z)[s] = z for s ≤ z.
(g1) If ge(z)[s+ 1] 6= ge(z)[s] then Xe,s+1 � ge(z)[s] + 1 6= Xe,s � ge(z)[s] + 1.
(g2) If ge(z)[s+ 1] 6= ge(z)[s] then ge(z)[s+ 1] = s+ 1 (hence ge(z)[s] < ge(z)[s+ 1].
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(g3) There are at most finitely many s such that ge(z)[s+ 1] 6= ge(z)[s].

So, intuitively, we may view ge(z) as (the final position of) a movable marker, where ge(z)[s]
is the position of the marker at the end of stage s. The marker ge(z) is moved only finitely
often ((g3)), it is not moved prior to stage z + 1 and its initial position is z ((g0)), and if it is
moved then it is moved to a higher position, namely the current stage ((g2)), and the move is
permitted by a change of Xe at or below the current position ((g1)). So, obviously, the rules
for defining ge(z)[s] guarantee that, ge(z)[s] is nondecreasing in s, ge(z)[s] ≥ z and, for s ≥ z,
ge(z)[s] ≤ s, ge(z) = lims→∞ ge(z)[s] < ω exists for all z ≥ 0, and ge ≤T Xe (e ≥ 0). (In the
construction below we tacitly assume that, for s ≤ z, ge(z)[s] is defined according to (g0), and
that ge(z)[s+ 1] = ge(z)[s] unless explicitly stated otherwise.)

We call a splitting requirement R〈e,i〉 infinitary if its premises are correct, i.e., if Xe∪Ye = A
and lims fi(z, s) = ge(z) for all numbers z, and we call R〈e,i〉 finitary otherwise. The priority

tree of the construction is the full binary tree T = {0, 1}<ω. A node (i.e., binary string) α
of length n codes a guess which of the first n R-requirements are infinitary, where α(m) = 0
denotes that Rm is infinitary and α(m) = 1 denotes that Rm is finitary (m < n). At the
end of any stage s of the construction we define a string δs of length s as follows, where δs is
the guess at the type of the first s splitting requirements R0, . . . , Rs−1 with which we work at
stage s+ 1.

First, define the length function ` by letting `(〈e, i〉, s) be the greatest ` ≤ s such that

∀ z < ` (ge(z)[s] = fi(z, s) & As � ge(z)[s] + 1 = (Xe,s ∪ Ye,s) � ge(z)[s] + 1).

Since, for any number z, lims→∞ ge(z)[s] < ω and lims→∞ fi(z, s) < ω exist (by construction
of ge and by choice of fi, respectively), it follows that lims→∞ `(〈e, i〉, s) = ω if R〈e,i〉 is
infinitary, and lims→∞ `(〈e, i〉, s) < ω otherwise. (For the construction it will be crucial that,
for infinitary R〈e,i〉 and for any numbers y and z such that y ≤ ge(z)[s] and z < `(〈e, i〉, s)
where y 6∈ As, it holds that y 6∈ Xe,s ∪Ye,s and, by enumerating y into A at stage s+ 1 we can
force y to enter either Xe or Ye at a stage ≥ s+ 1.)

Next, for each node α, inductively define α-stages as follows. Each stage s ≥ 0 is a λ-stage.
If s is an α-stage and if `(|α|, s) > `(|α|, t) for all α-stages t < s, then call s α-expansionary.
Then an α-stage s is an α0-stage if s is α-expansionary and s is an α1-stage otherwise.

Finally, for any s ≥ 0, let δs ∈ T be the unique node α of length s such that s is an α-stage
(and call a node β accessible at stage s+ 1 if β v δs), and let δ be the left most path through
T , such that, for any number m ≥ 0, δ � m < δs for infinitely many stages s. The path δ is the
true path through T , i.e., for any m ≥ 0, δ(m) = 0 if and only if the splitting requirement Rm
is infinitary. This fact, to which we refer as the True Path Lemma in the following, is proved
by a straightforward induction on m using the above observations on the length function `.

For each node β of length n there is a strategy Pβ for meeting the noncomputability re-
quirement Pn which is based on the guess that a higher priority R-requirement Rm (m < n)
is infinitary iff β(m) = 0. (For notational convenience, we call Rm – as well as m and β � m
– β-infinitary if β(m) = 0 and β-finitary otherwise (m < |β|). So, for β = δ � n, Rm is
β-infinitary iff Rm is infinitary.) We will guarantee that the strategy Pβ on the true path,
β = δ � n, meets the requirement Pn.

Before we explain the strategies Pβ, we make some general remarks on the format of the
construction. The strategies Pβ are finitary. Numbers are enumerated into the sets A and
C under construction only by these strategies. At any stage s + 1 > 0 there is a unique β
such that Pβ becomes active at stage s + 1, and, for this β, β ≤ δs, i.e., either β is to the
left of δs (β <L δs) or β is an initial segment of δs (β v δs). Moreover, if Pβ acts at stage
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s + 1 then all strategies Pβ′ with β < β′ are initialized at stage s + 1. (So, in particular, all
strategies to the right of the true path δ are initialized infinitely often.) Finally, if Pβ is in its
initial state at stage s and acts at stage s+ 1 then β is accessible at stage s+ 1 and Pβ may
enumerate only numbers ≥ s + 1 into A or C at any later stage. (For technical convenience,
we let this first action be vacuous and start with the proper actions for the sake of Pn only
afterwards.) Note that this framework ensure that any strategy Pβ with β < δ is initialized
only finitely often, and, in order to ensure that an infinitary splitting requirement R〈e,i〉 is
met, it suffices to ensure that Ye can compute the numbers enumerated into C by strategies
Pβ with (δ � 〈e, i〉)0 = δ � (〈e, i〉+ 1) v β.

The strategy Pβ (|β| = n) is a refinement of the usual noncomputability strategy: at some
stage s + 1, appoint x = s + 1 as follower. Then wait for a stage s′ ≥ s such that x ∈ Wn,s′ ,
i.e., such that the follower x is realized at stage s′ (and all larger stages). If there is such a
stage s′ then enumerate x into C at stage s′ + 1, and keep x out of C otherwise. (Followers
will be the only numbers which may be enumerated into C.)

Now, if 〈e, i〉 < n is β-infinitary then the strategy Pβ has to ensure that the set Ye ”knows”
whether or not the follower x is put into C (provided that (β � 〈e, i〉)0 < δ). (If there is no
β-infinitary R-requirement then Pβ is just the basic strategy and we call Pβ trivial). If R〈e,i〉,
〈e, i〉 < n, is the unique β-infinitary requirement of higher priority then this can be achieved
by the following basic module. First, at some stage s + 1, we appoint an unused number
z ≥ s+ 1 as tracker and an unused number y ≥ s+ 1 such that y ≤ ge(z)[s] as agitator. (For
simplicity, by (g0), we let z = s + 1 and y = ge(z)[s] = ge(s + 1)[s] = s + 1.) Next, at any
stage s′ + 1 > s + 1, we appoint an unused number x ≥ ge(z)[s](= ge(z)[s

′]) as follower (for
simplicity, we let s′ = s+ 1 and x = s′ + 1 = s+ 2). Now, if there is a stage s′′ > s′ such that
x is realized at stage s′′ then we further wait for a stage s′′′ > s′′ such that `(〈e, i〉, s′′′) ≥ z.
(We say, we wait for confirmation. Note that, for x ∈Wn, such a stage s′′′ must exist if β is on
the true path δ, i.e., if Pβ’s guess that R〈e,i〉 is infinitary is correct.) Then y ≤ ge(z)[s

′′′] ≤ x
(since, for the tracker z, ge(z) may be changed only by Pβ hence ge(z)[s

′′′] = ge(z)[s]) and

ge(z)[s
′′′] = fi(z, s

′′′) & As′′′ � ge(z)[s
′′′] + 1 = (Xe,s′′′ ∪ Ye,s′′′) � ge(z)[s′′′] + 1).

So enumerating the agitator y into A at stage s′′′+1 forces y to enter either Xe or Ye at a stage
> s′′′ (still assuming β v δ). If s′′′′ is the least stage > s′′′ at which this happens and Ye(y)
changes then, by y ≤ x, this permits the enumeration of the follower x into C thereby meeting
Pn. Otherwise, the enumeration of y ≤ ge(z)[s

′′′] into Xe allows us to redefine ge(z) at stage
s′′′′ + 1. In this case, we replace the agitator and the follower by new unused numbers y′ and
x′, respectively, adjust the value of ge(z)[s

′′′′+1] in such a way that y′ ≤ ge(z)[s′′′′+1] ≤ x′ (for
simplicity, at stage s′′′′+ 1 we let y′ = ge(z)[s

′′′′+ 1] = s′′′′+ 1 and at stage s′′′′+ 2 we let x′ =
s′′′′+ 2), and iterate the above process for the parameters z, y′, x′. Note that, though we have
replaced the agitator and follower, the tracker z is fixed. Since at any stage t+ 1 at which we
raise the value of ge(z) there has been a lesser stage t′ such that ge(z)[t] = ge(z)[t

′] = fi(z, t
′),

this process must stop after finitely many rounds since any change of ge(z)[t] is mirrored by
a change of fi(z, t), and fi is a convergent approximation. So (assuming β v δ), eventually,
there will be a follower which either is never realized or is realized and put into C whence Pn
is met. So the above action of the strategy Pβ for Pn is finitary, and – assuming β < δ – it
ensures that Pn is met.

If there is more than one β-infinitary R-requirement then some synchronization is needed.
While in the basic module the required reduction of C to Ye is obtained by direct permitting,
in the general case we achieve this by delayed permitting. In order to demonstrate this we
consider the case of two β-infinitary R-requirements, say R〈e0,i0〉 and R〈e1,i1〉 where 〈e0, i0〉 <
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〈e1, i1〉 (and where α0 and α1 are the corresponding nodes expanded by β, i.e., α00 < α10 v β).
There will be a 0-module related to R〈e0,i0〉 and a 1-module related to R〈e1,i1〉. We start
by appointing a 0-tracker z0 and a 0-agitator y0 (corresponding to 〈e0, i0〉), a 1-tracker z1
and a 1-agitator y1 (corresponding to 〈e1, i1〉), and a (common) follower x with the required
properties as in the basic module where we have to ensure that all numbers are unused and
the parameters for α0 differ from the corresponding parameters for α1 (for simplicity, at some
stage s+ 1 we let z0 = s+ 1 and y0 = ge0(z0)[s] = s+ 1, at stage s+ 2 we let z1 = s+ 2 and
y1 = ge1(z1)[s + 1] = s + 2, and at stage s + 3 we let x = s + 3). Then we start the basic
module for 〈e1, i1〉, i.e., the 1-module, with the parameters z1, y1, x. Now it may happen that
there will be a stage s′ such that the current follower x[s′] is permitted by Ye1 to enter C at
stage s′+ 1 (if this is not the case and β < δ then, as in the basic module, we may argue that
Pn is met). Now, at stage s′ + 1, instead of enumerating x[s′] into C, we activate the basic
module for 〈e0, i0〉, i.e., the 0-module, with the previously defined agitator and tracker and the
current follower (note that x[s+ 2] ≤ x[s′]), wait for getting (0-)confirmation, if so enumerate
y0 into A, and wait for the corresponding change of Xe0 or Ye0 (say at stage s′′; note that,
assuming that α00 < δ, such a stage must exist). Now, if Ye0 permits x[s′], then the attack is
completed by enumerating x[s′] into C. Otherwise, i.e., if Xe0 allows us to raise the value of
ge0(z0), then - as in the basic module - we replace the 0-agitator and raise the value of ge0(z0)
at stage s′′ + 1 (by setting y0[s

′′ + 1] = ge0(z0)[s
′′ + 1] = s′′ + 1) and, at the next stages, we

reset the parameters of the 1-module including the follower (by setting z1[s
′′ + 2] = s′′ + 2,

y1[s
′′ + 2] = ge1(s′′ + 2)[s′′ + 2] and x[s′′ + 3] = s′′ + 3) and start the basic module for 〈e1, i1〉

with these new parameters.
As in the basic module we may argue that any instance of the 1-module is finite and

(assuming β < δ) either guarantees that Pn is met as witnessed by the current follower or
ends with a call of the 0-module. Since the tracker z0 of the 0-module is fixed, we may argue
– again, as in the basic module – that this module is finite and (assuming β < δ) either ends
with the current follower witnessing that Pn is met or with the call of a final instance of the
1-module where the follower of this instance witnesses that Pn is met. So the strategy is
finitary and, assuming β < δ, the strategy ensures that Pn is met. Moreover, as in the basic
module, the action is compatible with R〈e0,i0〉 since the follower x is put into C only if it is
permitted by Ye0 . Compatibility with R〈e1,i1〉 is by delayed permitting. To show the latter
assume that α10 < δ (otherwise the action of Pβ is not relevant for the satisfaction of the
requirement R〈e1,i1〉 as pointed out above). Then α00 < δ whence R〈e0,i0〉 is infinitary. So
any call of the 0-module will result either in the enumeration of the current follower into C
or in a reset of the 1-module entailing the cancellation of the follower (unless the strategy
Pβ is initialized, in which case the follower is cancelled too). Since any call of the 0-module
starts with the permitting of the current follower by Ye1 , this shows that C ≤T Ye1 by delayed
permitting.

We now turn to the construction. There and in the following we use the following additional
notation related to the noncomputability strategies Pβ. For any node β let n be the length of

β (and, similarly, |β′| = n′ etc.). Let mβ be the number of β-infinitary R-requirements (hence
Pβ is trivial if mβ = 0). If Pβ is not trivial, let

〈eβ0 , i
β
0 〉 < · · · < 〈e

β
mβ−1, i

β
mβ−1〉 < n and αβ0 < · · · < αβ

mβ−1 < β

be the β-infinitary numbers and β-infinitary nodes in order of magnitude.
At any stage s of the construction the strategy Pβ will be in exactly one of the following

states describing the progress of the current attack (m < mβ): initial state, waiting for an
m-tracker, waiting for a follower, waiting for realization, waiting for m-confirmation, waiting
for m-permission and, being satisfied. The m-tracker, m-agitator and follower of β at the end
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of stage s (if defined) are denoted by zβm[s], yβm[s] and xβ[s], respectively, where the m-tracker
and m-agitator are concerned with the β-infinitary R-requirement R〈eβm,iβm〉

. (Moreover, the

m-agitator yβm[s] is defined at stage s iff the m-tracker zβm[s] is defined at stage s and, if so,

yβm[s] = g
eβm

(zβm[s])[s]. Hence, strictly speaking, yβm[s] is redundant.) All parameters associated

with Pβ persist unless they are explicitly changed. If Pβ becomes initialized then it is reset to
the initial state and all numbers associated with it (if any) are cancelled.

Stage 0. For any β, Pβ is initialized at stage 0 hence in the initial state.

Stage s+1. The highest priority strategy Pβ which requires attention at stage s + 1
acts according to the case via which it requires attention as described in the following.
All strategies Pβ′ with β < β′ are initialized.

The strategy Pβ requires attention at stage s+1 if one of the following holds (where

m < mβ).

(0) Pβ is in the initial state at the end of stage s and β v δs.
Action. If Pβ is trivial then declare that Pβ waits for a follower. If Pβ is not
trivial then declare that Pβ waits for a 0-tracker.

(1)m Pβ waits for an m-tracker at the end of stage s.

Action. Appoint zβm[s + 1] = s + 1 as m-tracker of β, and call yβm[s + 1] =

gem(zβm[s + 1])[s + 1](= gem(s + 1)[s + 1] = s + 1) the m-agitator of β at stage
s + 1. If m < mβ − 1 declare that Pβ waits for an (m + 1)-tracker. Otherwise
declare that Pβ waits for a follower.

(2) Pβ waits for a follower at the end of stage s.

Action. Appoint xβ[s + 1] = s + 1 as β-follower and declare that Pβ waits for
realization.

(3) Pβ waits for realization at the end of stage s and xβ[s] ∈Wn,s.

Action. If Pβ is trivial then enumerate xβ[s] into C and declare that Pβ is satisfied.

Otherwise declare that Pβ waits for (mβ − 1)-confirmation.

(4)m Pβ waits for m-confirmation at the end of stage s and `(〈eβm, iβm〉, s) > zβm[s].

Action. Enumerate the m-agitator yβm[s] into A. Declare that Pβ waits for m-
permission.

(5)Ym Pβ waits for m-permission at the end of stage s and yβm[s] = g
eβm

(zβm[s])[s] is in

Y
eβm,s
\ Y

eβm,s−1
.

Action. If m = 0 then enumerate xβ[s] into C and declare that Pβ is satisfied. If
m > 0 then declare that Pβ waits for (m− 1)-confirmation.

(5)Xm Pβ waits for m-permission at the end of stage s and yβm[s] = g
eβm

(zβm[s])[s] is in

X
eβm,s
\X

eβm,s−1
.

Action. Let g
eβm

(zβm[s])[s+ 1] = s+ 1 and replace the m-agitator of β by yβm[s+

1] = g
eβm

(zβm[s])[s + 1](= g
eβm

(s + 1)[s + 1] = s + 1). If m < mβ − 1 then, for

m < m′ ≤ mβ − 1, cancel the current m′-tracker and m′-agitator of β, cancel the



NOTES ON SACKS’ SPLITTING THEOREM 19

current follower of β, and declare that Pβ waits for an (m+1)-tracker. Otherwise,
cancel the current follower of β and declare that Pβ waits for a follower.

If Pβ acts via clause (4)m at stage s + 1 then we say that Pβ m-acts at stage s + 1,

if Pβ requires attention via (5)Ym at stage s+ 1 then we say that Pβ is m-permitted at

stage s, and if Pβ acts via (5)Xm at stage s+ 1 then we say that Pβ is m-reset at stage
s+ 1.

This completes the construction. In order to show that the construction is correct, we start
with some observations.

The strategy Pδs requires attention via clause (0) at stage s+ 1. So there is a unique node
β, in the following denoted by βs, such that the strategy Pβ becomes active at stage s + 1.
Note that βs ≤ δs and all strategies Pβ′ with βs < β′ (hence with δs < β′) are initialized at
stage s+ 1.

Next note that, at any stage s + 1, at most one tracker is appointed, and – if so – this
tracker is assigned the value s+ 1. So trackers are mutually different, i.e., if (β,m) 6= (β′,m′)

and zβm[s] and zβ
′

m′ [s
′] are defined then zβm[s] 6= zβ

′

m′ [s
′]. Moreover, zβm[s] ≤ s and if s < s′

and zβm[s] ↓6= zβm[s′] ↓ then s < zβm[s′]. Corresponding observations apply to agitators and
followers, respectively. Also note that if Pβ acts via clause (4)m at stages s+ 1 < s′ + 1 then

yβm[s] < yβm[s′] since there must be a stage s′′ with s + 1 < s′′ + 1 < s′ + 1 such that Pβ is

initialized or m′-reset for some m′ ≤ m at stage s′′ + 1 whence yβm[s] ≤ s < s′′ + 1 ≤ yβm[s′].
So a number new y is enumerated into A at stage s + 1 (i.e., y ∈ As+1 \ As) if and only if,

for β = βs, y = g
eβm

(zβm[s], s) and Pβ acts via (4)m at stage s+ 1. Similarly, a new number x

is enumerated into C at stage s + 1 iff, for β = βs, x is the follower xβ[s] of the strategy Pβ
at the end of stage s and either Pβ is trival and acts via (3) at stage s+ 1 or Pβ is nontrivial

and acts via (5)Y0 at stage s+ 1.

Claim 1. (a) If Pβ is initialized only finitely often then Pβ requires attention only finitely
often.
(b) If β < δ then there is a stage sβ such that no strategy Pβ′ with β′ <L β requires attention
after stage sβ.
(c) If β < δ then Pβ is initialized only finitely often and requires attention only finitely often.

Proof. (a) Given β, for a contradiction assume that Pβ is initialized only finitely often and
Pβ requires attention infinitely often. Fix t0 maximal such that Pβ is initialized at stage t0.
Then Pβ acts at any stage s+ 1 > t0 at which it requires attention. So, in particular, Pβ acts
infinitely often but is initialized only finitely often. As one can easily check, this implies that
Pβ is nontrivial and Pβ is reset infinitely often. So fix m < mβ minimal such that Pβ is m-reset
infinitely often, fix t1 > t0 minimal such that Pβ is not m′-reset for any m′ < m after stage
t1, and let sk + 1 (k ≥ 0) be the stages > t1 at which Pβ is m-reset (where sk < sk+1). Then

Pβ has an m-tracker at the end of stage s1, say z = zβm[s1]. Since Pβ is neither initialized nor

m′-reset for any m′ < m after this stage, this tracker is permanent, i.e., zβm[s] = z for all stages

s ≥ s1. Since Pβ is m-reset at stage sk + 1, it follows that yβm[sk + 1]] = g
eβm

(z)[sk + 1] = sk + 1

for all k ≥ 1. In fact, since sk+1 + 1 is the next greater stage at which Pβ is m-reset, it
follows that g

eβm
(z)[s] = sk + 1 for all stages s with sk + 1 ≤ s < sk+1 + 1. On the other

hand, by construction, there must be a stage ŝk such that sk < ŝk < sk+1 and such that Pβ
m-acts at stage ŝk + 1, i.e., acts via clause (4)m at stage ŝk + 1. Hence `(〈eβm, iβm), ŝk) > z, i.e.,
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f
iβm

(z, ŝk) = g
eβm

(z)[s] = sk + 1. So limk→∞ fiβm
(z, ŝk) = ω. But this contradicts the fact that

f
iβm

is a convergent approximation, i.e., that lims→∞ fiβm
(z, s) < ω exists.

(b) Fix β < δ. Since β is on the true path, we may fix a stage t such that β ≤ δs for
s ≥ t. Then no strategy Pβ′ with β′ <L β requires attention via clause (0) after stage t (since
β′ 6v δs). So a strategy Pβ′ with β′ <L β can require attention at a stage s+ 1 > t only if Pβ′
has acted before stage t+ 1 and if Pβ′ has not been initialized at any stage u with t ≤ u ≤ s.
Since there are only finitely many strategies which act prior to stage t + 1, the existence of
the desired stage sβ follows by part (a) of the claim.

(c) The proof is by induction on |β|. Fix β < δ and, by inductive hypothesis, fix s0 > sβ
such that no strategy Pβ′ with β′ < β requires attention after stage s0 (where sβ is chosen as
in part (b) of the claim). Then no strategy Pβ′ with β′ < β acts after stage s0. So Pβ is not
initialized after stage s0. The second part of (c) follows by part (a) of the claim. �

Claim 2. For e ≥ 0, ge is total and ge ≤T Xe.

Proof. Fix e and z. It suffices to show that (g0)-(g2) hold for all stages s and (g3) holds.
(g0) is immediate. For a proof of (g1) and (g2) assume that ge(z)[s + 1] 6= ge(z)[s]. Then

there is a unique nontrivial strategy Pβ and a number m < mβ such that e = eβm, z = zβm[s]

and Pβ acts via clause (5)Xm. So, by case assumption, Xe,s+1(ge(z)[s]) 6= Xe,s(ge(z)[s]) and
ge(z)[s] < ge(z)[s+ 1] since ge(z)[s] ≤ s and ge(z)[s+ 1] = s+ 1.

Finally, for a proof of (g3), for a contradiction assume that there are infinitely many stages
s such that ge(z)[s+ 1] 6= ge(z)[s]. Then there is a nontrivial strategy Pβ, a number m < mβ,
and a stage s0 such that z becomes appointed as m-tracker of β at stage s0 + 1, and there are

infinitely many stages s ≥ s0 such that z = zβm[s] = zβm[s0 + 1] – whence Pβ is not initialized

after stage s0 – and Pβ acts via (5)Xm at stage s+ 1. But this contradicts Claim 1(a). �

Claim 3. For n ≥ 0, Pn is met.

Proof. Fix β such that |β| = n and β is on the true path δ. We will show that Pβ has a
permanent follower x and that x ∈ C iff x ∈Wn. So x witnesses that Pn is met.

By Claim 1 fix s0 minimal such that Pβ is not initialized after stage s0 + 1 and Pβ does not
require attention (hence does not act) after stage s0 + 1. Then the state σ of Pβ at the end
of stage s0 + 1 is permanent and so are all other parameters associated with Pβ at the end of
stage s0 + 1.

Obviously, σ is not the initial state (otherwise, by β < δ, there are infinitely many stages
s > s0 such that β v δs and Pβ would require attention via (0) at stage s+ 1 for any such s).
Similarly, Pβ cannot permanently wait for an m-tracker or a follower (since otherwise Pβ would
require attention via (1)m or (2) at any stage s+ 1 > s0 + 1). So, by minimality of s0, Pβ acts

at stage s0 +1, has a follower x at this stage, and either Pβ is trivial or, for all m ≤ mβ−1, an

m-tracker zm = zβm[s0+1] and the corresponding m-agitator ym = yβm[s0+1] = gem(zm)[s0+1]
are defined. Moreover, if Pβ permanently waits for realization or is permanently satisfied then,
as one can easily check, C(x) = Wn(x) = 0 and C(x) = Wn(x) = 1, respectively. So, in the
remainder of the argument we may assume that Pβ is nontrivial, and it suffices to rule out
that Pβ permanently waits for m-confirmation or permanently waits for m-permission for some

m < mβ.
For a contradiction, first assume that Pβ permanently waits for m-confirmation. Since

αβm0 v β < δ, lims→∞ `(〈eβm, iβm〉, s) = ω, hence `(〈eβm, iβm〉, s) > zm for almost all s ≥ s0 + 1.
So Pβ will require attention via clause (4)m after stage s0 + 1. A contradiction.
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Finally, assume that Pβ permanently waits for m-permission. Then Pβ acts via (4)m at
stage s0 + 1. It follows that the parameters attached to Pβ are unchanged at stage s0 + 1 and

so is the approximation of g
eβm

. So the corresponding values are permanent, i.e., zβm = zβm[s]

and yβm = yβm[s] = g
eβm

(zβm[s])[s] = g
eβm

(zβm) for all s ≥ s0. Moreover, yβm[s0] 6∈ As0 and

`(〈eβm, iβm〉, s0) > zβm[s0] whence As0(yβm[s0]) = X
eβm,s0

(yβm[s0]) = Y
eβms0

(yβm[s0]) = 0, and yβm[s0]

is enumerated into A at stage s0 + 1. Since, by αβm0 v β < δ, A = X
eβm
∪ Y

eβm
, it follows that

there must be a stage s > s0 such that yβm[s0] = yβm[s] is enumerated into X
eβm

or Y
eβm

at stage

s + 1. But this implies that Pβ requires attention via (5)Xm or (5)Ym at stage s + 1 > s0 + 1
contrary to the choice of s0.

This completes the proof of Claim 3. �

Claim 4. For e, i ≥ 0, R〈e,i〉 is met.

Proof. Fix e, i ≥ 0 where w.l.o.g. R〈e,i〉 is infinitary, i.e., Xe ∪ Ye = A and fi converges to
ge. Let α = δ � 〈e, i〉. By assumption, δ(〈e, i〉) = 0 hence α0 < δ. So, by Claim 1, we may fix
a stage s0 such that no strategy Pβ with β < α0 acts after stage s0.

Given a number x, we have to show that C(x) can be computed from Ye uniformly in x.
Note that x may be put into C only if x is a follower. Moreover, if x is a follower then x > 0
and x is appointed at stage x whence we may decide whether or not x is a follower. So, in the
following, w.l.o.g. we may assume that x is a follower, we may let sx = x − 1 (so sx + 1 = x
is the stage at which x is appointed), and we may fix the unique β such that x follows Pβ.
Distinguish the following three cases.

Case 1: β < α0. Then, by case assumption and by choice of s0, x is in C if and only if x is
enumerated into C by the end of stage s0.

Case 2: α0 <L β. By α0 < δ, β is to the right of δ whence Pβ is initialized infinitely often.
So x is in C if and only if x is enumerated into C by the end of stage tx where tx ist the least
stage > x = sx + 1 at which Pβ is initialized.

Case 3: α0 < β. By case assumption, 〈e, i〉 is β-infinitary (hence, in particular, Pβ is

nontrivial) and we may (effectively) fix m < mβ such that 〈e, i〉 = 〈eβm, iβm〉 and α = αβm. Since
x is appointed as Pβ-follower (i.e., Pβ acts via clause (2)) at stage sx + 1 = x, it follows by

construction that, for any m′ < mβ, Pβ has an m′-tracker zm′ = zβm′ [sx] at the end of stage

sx and a corresponding m′-agitator ym′ = yβm′ [sx] = g
eβ
m′

(zm′)[sx]. Note that if any of this

parameters changes at a stage s + 1 > sx then, at the least such stage s + 1, Pβ is reset or
initialized hence x is cancelled. Moreover, if x is enumerated into C at a stage s+ 1 > sx then
there must be a stage s′ such that sx + 1 < s′+ 1 ≤ s+ 1 and Pβ acts via clause (5)Ym at stage

s′ + 1 whence ym = yβm[s′] ∈ Ye,s′ \ Ye,s′−1.
So, in the remainder of the argument, w.l.o.g. we may assume that ym ∈ Ye (since x 6∈ C

otherwise). It suffices to show that there is a stage s+ 1 > sx + 1 such that the Pβ-follower x
is cancelled at stage s+ 1 or x is enumerated into C at stage s+ 1 (whence C(x) = Cs+1(x)
for the least such stage s). For a contradiction assume that there is no such stage. Since x
is never cancelled, Pβ is neither reset nor initialized after stage sx. So the parameters zm′ ,

ym′ and x are permanent, i.e., zβm′ [s] = zm′ , y
β
m′ [s] = g

eβ
m′

(zβm′)[s] = g
eβ
m′

(zm′)[sx] = ym′ and

xβ[s] = x for s ≥ sx (m′ < mβ), Pβ acts whenever it requires attention after stage sx, and Pβ
does not require attention via clause (5)Xm′ (m′ < mβ) after this stage. Moreover, by Claim 1,
there is a greatest stage ≥ sx + 1, say t0 + 1, at which Pβ requires attention. On the other
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hand, since R〈e,i〉 is infinitary and since the m-agitator ym of Pβ is in Ye, there must be a
stage s+ 1 > sx + 1 at which Pβ acts via (4)m and enumerates ym into A. So there must be

a number m′0 ≤ m such that Pβ acts via (4)m′0 or (5)Ym′0
at stage t0 + 1.

Now, it is crucial to note that, for any m′ ≤ m, the requirement R〈eβ
m′ ,i

β

m′ 〉
is infinitary since

R〈eβ
m′ ,i

β

m′ 〉
is β-infinitary and 〈eβm′ , i

β
m′〉 ≤ 〈e

β
m, i

β
m〉 whence αm′0 v αm0 v β � 〈eβm, iβm〉+ 1 < δ.

This gives the desired contradiction as follows. First assume that Pβ acts via (5)Ym′0
at stage

t0 + 1. Since x is not enumerated into C, m′0 > 0 and Pβ waits for (m′0 − 1)-confirmation

at all stages s ≥ t0 + 1. Since R〈eβ
m′0−1

,iβ
m′0−1

〉 is infinitary, hence `(〈eβ
m′0−1

, iβ
m′0−1

〉, s) > zm′0−1

for almost all stages s, it follows that Pβ requires attention via (4)m′0−1 after stage t0 + 1

contrary to choice of t0. Finally, assume that Pβ acts via (4)m′0 at stage t0 + 1. Then

`(〈eβ
m′0−1

, iβ
m′0−1

〉, t0) > zm′0−1 whence At0(ym′0−1) = (X
eβ
m′0−1

,t0
∪ Y

eβ
m′0−1

,t0
)(ym′0−1) = 0, ym′0−1

is enumerated into A at stage t0+1 and Pβ waits for (m′0−1)-permission at all stages s ≥ t0+1.
So, since R〈eβ

m′0−1
,iβ
m′0−1

〉 is infinitary, there is a stage s ≥ t0 + 1 such that ym′0−1 is enumerated

into X
eβ
m′0−1

or Y
eβ
m′0−1

at stage s. So Pβ requires attention via clause (5)Ym′0−1
or (5)Xm′0−1

at

stage s+ 1 > t0 + 1 contrary to choice of t0.
This completes the procedure for uniformly computing C(x) from Ye and the proof of Claim

4. (Note that the reduction C ≤T Ye is by delayed straight permitting, hence a wtt-reduction,
in fact an ibT-reduction. So in the statement of Theorem 4.1 we may replace C ≤T A1 by
C ≤wtt A1 or even C ≤ibT A1.) �

Now, correctness of the construction is immediate by Claims 2, 3 and 4. This completes
the proof of the theorem. �

Theorem 4.1 means that the strong version of Sacks’ Splitting Theorem is truly “finite
injury of unbounded type”. As we point out in the introduction, the result also holds for
degrees.

Theorem 4.3. Let α < ε0. There are c.e. degrees a and c > 0 such that for all c.e. degrees
a0,a1 with a0 ∨ a1 = a, if a0 is totally α-c.a. then c ≤ a1.

Proof (sketch). The proof resembles the proof of Theorem 4.1 though it is somewhat more
involved. We only sketch the necessary changes. The splitting requirements

R〈e,i〉 : If Xe ∪ Ye = A and if fi converges to ge then C ≤T Ye.
in the set proof are replaced by

R〈e,i〉 : If ΦXe∪Ye
e = A ∧ΨA

e = Xe ∪ Ye and if fi converges to ge then C ≤T Ye.
where now {(Xe, Ye,Φe,Ψe)}e≥0 is a computable numbering of all disjoint pairs of c.e. sets
and all pairs of Turing functionals1. The convergent approximations fi are chosen as in the
previous proof, and, as there, the functions ge are total functions defined in the course of the
construction. Moreover, if ΦXe∪Ye

e = A and ΨA
e = Xe ∪ Ye – in the following we shortly say

1Since only total reductions will be relevant, w.l.o.g. we may assume that, for any oracle X, the domains of
the functions ΦXe and ΨX

e are either ω or initial segments of ω, and that the corresponding use functions ϕXe
and ψXe , respectively, are nondecreasing (similarly, for the approximations at stage s). Moreover, we assume
that if ΦXe,s(x) is defined then e, x, ϕXe (x),ΦXe (x) < s (and, correspondingly, for Ψ). So a computation with

oracle X which converges at stage s can be preserved by preserving X � s.
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that e is correct – then ge is Xe-computable (in the previous proof, ge was Xe-computable for
any e). It is easy to show that this together with meeting the noncomputability requirements
and the modified splitting requirements gives the theorem for a = degT (A) and c = degT (C).

As in the previous proof we define a length of agreement function `(〈e, i〉, s) in order to
guess whether R〈e,i〉 is infinitary (i.e., whether the hypotheses are correct) or not. For this

sake we first define the length function ˆ̀(e, s) corresponding to the first hypothesis (depending
on e only) describing the current A-controllable length of agreement between A and ΦXe∪Ye

e .

Let ˆ̀(e, s) be the greatest ` ≤ s such that

∀ y < ` (Φ
Xe,s∪Ye,s
e,s (y) = As(y) ∧ ∀ u < ϕ

Xe,s∪Ye,s
e,s (y)(ΨAs

e,s(u) = Xe,s ∪ Ye,s(u))).

Then the length function ` is defined by

`(〈e, i〉, s) = max y ≤ ˆ̀(e, s) [∀x < y (ge(x)[s] = fi(x, s))].

Note that, for correct e, lims→∞ ˆ̀(e, s) = ω. Moreover, for such e, if ˆ̀(e, s) > y then

Xe,s ∪ Ye,s � ϕXe,s∪Ye,se,s (y) can be preserved by preserving As � ψAse,s(ϕ
Xe,s∪Ye,s
e,s (y)), and if we

change A � y+ 1 at a stage ≥ s, then some number below ϕ
Xe,s∪Ye,s
e,s (y) must enter Xe or Ye at

or after this stage too. Also note that, for infinitary R〈e,i〉, lims→∞ `(〈e, i〉, s) = ω (hence, by

`(〈e, i〉, s) ≤ ˆ̀(e, s), lims→∞ ˆ̀(e, s) = ω too). (In the proof of Theorem 4.1 we also had that,
for finitary R〈e,i〉, lims→∞ `(〈e, i〉, s) ↓< ω. This is not true here anymore, but this does not
have any impact on the proof.) The priority tree T and the relevant parameters related to T
are defined as in the previous proof using the revised definition of the length function `. Then
δ(〈e, i〉) = 0 for all infinitary requirements R〈e,i〉. (Though, in contrast to the previous proof,
δ may not be the true path since, as mentioned, now we may have lim sups→∞ `(〈e, i〉, s) = ω
for some finitary requirement R〈e,i〉. But this is not relevant for the proof.) Hence, for any
infinitary requirement R〈e,i〉 and any node β extending δ � 〈e, i〉+ 1, 〈e, i〉 is β-infinitary.

Now, the basic difference to the previous proof is the following. In the set proof, for given
e such that Xe ∪ Ye = A, by putting a new number y into A at a stage at which the current
parts of Xe ∪ Ye and A agreed on y, we could force y into Xe or Ye. Now, assuming that
e is correct, putting a new number y into A at a stage s + 1 such that ˆ̀(e, s) > y will only

guarantee that Xe or Ye will change on a number < ϕ
Xe,s∪Ye,s
e (y). This weaker effect forces us

to adapt the strategies Pβ for meeting the noncomputability requirements. As a consequence,
we have to relax the rules for moving the markers ge.

We explain the necessary changes by considering the basic module of a strategy Pβ where
there is a single β-infinitary requirement R〈e,i〉 (and where we assume that β � 〈e, i〉 + 1
is an initial segment of δ). There, at some stage s + 1, we started the attack by picking
z = s + 1 as tracker, and by letting y = ge(z)[s + 1] = s + 1 and x = s + 2 be the first
instances of the corresponding agitator and follower, respectively. For the argument, it was
crucial, that putting the agitator y into A at a later stage s′ + 1 made Xe � ge(z)[s′] + 1 or
Ye � x + 1 change at a stage s′′ + 1 ≥ s′ + 1 (since y enters one of these sets at this stage
and y = ge(z)[s + 1] ≤ min{ge[z](s′), x}). The former case gave us the permission to raise
the value of the marker ge(z) (in accordance with the marker rule (g1)) at stage s′′ + 1, i.e.,
let ge(z)[s

′′ + 1] = s′′ + 1. In this case we defined new instances of the agitator and follower,
namely we let y = s′′+ 1 and x = s′′+ 2, and we iterated the attack with this new parameters
(and we argued that this case may happen only finitely often whence eventually the second
case must apply unless the requirement P|β| is met for some trivial reasons). In the latter case,
Ye permitted the enumeration of x into C at stage s′′+ 1 and let us successfully complete the
attack at this stage.
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In the current setting, putting y into A gives this desired effect only if ϕ
Xe,s′∪Ye,s′
e (y) ≤

ge(z)[s
′] ≤ x. In order to achieve this, we do the following: having picked the agitator y (at

stage y), we wait for the first greater stage t+1 such that ˆ̀(e, t) > y (whence ϕ
Xe,t∪Ye,t
e (y) < t),

move the marker ge(z) to the new position ge(z)[t + 1] = t + 1 at stage t + 1, (temporarily)

preserve the computation Φ
Xe,t∪Ye,t
e (y) (by preserving A � t up to the stage at which we put

the agitator into A), and pick the follower x = t+2 at the next stage. Moreover, if the agitator
y becomes replaced by a new instance y′ (at a later stage y′), we act correspondingly, i.e., at

the first greater stage t′ + 1 such that ˆ̀(e, t′) > y′ we move the marker ge(z) and appoint the
new instance x′ = t′ + 2 of the follower at the next stage.

Of course, these moves of ge(z) are not compatible with the marker rule (g1), i.e., these
moves are not directly permitted by Xe. For correct e, however, these moves are recognizable
by Xe via delayed permitting. To be more precise, assume that e is correct. Then ˆ̀(e, s) is

unbounded in s, whence the function t(y) = µt ≥ y(ˆ̀(e)[t] > y) is total and computable. We
claim that Xe can tell whether a position ge(z)[s] of the marker is final or not. (Note that
this is sufficient to compute (the final position of the marker) ge(z) relative to Xe, since the
other marker rules are not affected by these modifications whence, in particular, the marker
ge(z) reaches a final position.) First note that the marker ge(z) is moved only if z becomes
appointed as a tracker (related to e) at stage z, and if ge(z) is moved at stage s′ + 1 then z is
tracker at stage s′ and there is a corresponding agitator y[s′] at stage s′ (appointed at stage
y[s′] ≤ s′). So, in order to tell whether ge(z)[s] = ge(z) or not, w.l.o.g. we may assume that
z ≤ s and that z is a tracker at stage s, and we may fix the corresponding agitator y = y[s]
at stage s (appointed at stage y). Now distinguish the following two cases. First assume that
s ≤ t(y). Then, unless z becomes cancelled earlier, ge(z) is moved at stage t(y)+1. So, in this
case, ge(z)[s] = ge(z) iff ge(z)[s] = ge(z)[t(y) + 1]. Finally, assume that t(y) < s. Then ge(z)
is moved after stage s only if the agitator y is replaced later, where the first replacement must
occur at a stage s′+1 such that Xe changes on a number ≤ ge(z)[s] at stage s′. So fix s′ minimal
such that Xe,s′ � ge(z)[s]+1 = Xe � ge(z)[s]+1 . Now, if y[s′+1] is not defined or y[s′+1] = y
then ge(z) cannot move after stage s′ + 1 whence ge(z)[s] = ge(z) iff ge(z)[s] = ge(z)[s

′ + 1].
Otherwise, as in the first case, the first move of ge(z) after stage s (if any) must occur by stage
t(y[s′ + 1]) + 1 whence ge(z)[s] = ge(z) iff ge(z)[s] = ge(z)[t(y[s′ + 1]) + 1].

Formally, the construction has to be modified as follows. Clause (1)m has to be split into
the following two clauses where waiting for m-lifting (m < mβ) is a new state in which the

attack waits to become able to move g
eβm

(zβm) above the current value of ϕ
X
e
β
m
∪Y

e
β
m

eβm
(yβm) and

to preserve this configuration.

(1)m Pβ waits for an m-tracker at the end of stage s.

Action. Appoint zβm[s+ 1] = s+ 1 as m-tracker of β and appoint yβm[s+ 1] = s+ 1 as
m-agitator of β at stage s+ 1. Declare that Pβ waits for m-lifting.

(1)′m Pβ waits for m-lifting and ˆ̀(eβm, s) > yβm[s+ 1].

Action. Let g
eβm

(zβm[s+ 1])[s+ 1] = s+ 1. If m < mβ − 1 declare that Pβ waits for an

(m+ 1)-tracker. Otherwise declare that Pβ waits for a follower.

Finally, clauses (5)Ym and (5)Xm have to be adjusted as follows where the action corresponding
to clause (5)Ym is unchanged.

(5)Ym Pβ waits for m-permission at the end of stage s and Y
eβm,s

� g
eβm

(zβm[s])[s]+1 6= Y
eβm,s−1

�

g
eβm

(zβm[s])[s] + 1.



NOTES ON SACKS’ SPLITTING THEOREM 25

(5)Xm Pβ waits for m-permission at the end of stage s and X
eβm,s

� g
eβm

(zβm[s])[s] + 1 6=
X
eβm,s−1

� g
eβm

(zβm[s])[s] + 1.

Action. Replace the m-agitator yβm[s] by yβm[s + 1] = s + 1, cancel the follower xβ[s],

and – if m < mβ − 1 – cancel the m′-tracker zβm′ [s] and the m′-agitator yβm′ [s] for all

m′ with m < m′ < mβ. Finally, declare that Pβ waits for m-lifting.

The formal proof of correctness is left to the reader.
�
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