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1 Introduction

Suppose we are given a collection of mathematical objects such as the
class of connected compact Polish groups or the set of all real numbers
which are normal to some base. Is there a reasonable classification of
these objects (e.g. by invariants)? One nice property expected from a
useful classification is that it makes the classified objects easier to handle
algorithmically. Even if the general classification of a class of objects is im-
possible, sometimes there is a useful hierarchy of objects in this class, e.g.,
the Cantor-Bendixson rank of a scattered Polish space, the Ulm type of a
reduced abelian p-group, etc. We would expect that the algorithmic, alge-
braic, or topological complexity of objects increase from lower to higher
levels of a hierarchy. Can you make this intuition formal? Is it possible to
formally measure the algorithmic complexity of a given classification or
a hierarchy, or perhaps show that there is no reasonable classification at
all? Can algorithmic tools help us to define useful hierarchies?

In the present article we discuss several recent works in computable
analysis which are related to classification. The main underlying theme
here is applying computability theory to a classification problem or a hi-
erarchy; neither the problem nor the hierarchy has to be computability-
theoretic. The discussed results can be informally split into three cate-
gories:
I. Local e↵ective classifications. Given some classical metric or Banach

space we ask which elements of the space satisfy a certain property. For
example: Which real numbers are normal? Which continuous functions
are regular? And so on.

II. Global e↵ective classifications. How hard is it to classify, say, compact
Polish groups? What about compact Polish spaces? To answer these
questions formally we extend methods of computable structure theory
to computable separable spaces.

III. Applications of computability to hierarchies.Usually elements of higher
levels of a given hierarchy are expected to be more complex. Com-
putability theory can be used to make this intuition formal. Such re-
sults are clearly related to (I), but there are also explicit connections
with Weihrauch reducibility and with theme II.



These three themes above are closely related and no firm line can be drawn
between any two of them. We begin our discussion with the second global
scheme (II) and a certain related hierarchy. Then we discuss the local
theme (I) and finish with more on local hierarchies (III).

2 Global e↵ective classifications.

There has been a lot of applications of computability theoretic techniques
to classification problems in countable algebra; see [GK02,Mon14]. A few
years ago Melnikov [Mel13] proposed that methods of computable struc-
ture theory can be extended to computable separable spaces. We will see
that some of these methods can be used to measure the classification
problems for classes of separable spaces. We first look at the simpler case
of Polish metric spaces, and then we discuss Banach spaces and Polish
groups.
Computable structures. To apply methods of computable structure
theory we need to make the standard notion of a computable Polish
space [BHW08,Wei00,PER89] look more familiar to a computable alge-
braist. A structure on a Polish space M = (M,d) is any map ↵ : ! ! M
such that its range is a dense subset of M. The open diagram D

+(↵) of a
structure ↵ : ! ! M is the collection of Gödel numbers of all elementary
facts of the form d(↵(i),↵(j)) < r and d(↵(i),↵(j)) > q which hold on
M, where i, j range over ! and q, r over Q. We say that ↵ is computable

if D+(↵) is a computably enumerable set1.
We return to classification. Fix some class K of Polish spaces. First,

suppose our task is to classify computable members of K. Fix a uniformly
computable list of all partially computable structures on Polish spaces:
↵0,↵1,↵2, . . . , where each computable structure ↵i is identified with its
c.e. open diagram D

+(↵i).
Definition 1. The complexity of the classification problem for computable
members of K is measured using the following two index sets:

1. The characterisation problem for computable members of K:

I(K) = {e : ↵e 2 K}.

2. The isomorphism problem for computable members of K:
E(K) = {(e, j) : e, j 2 I(K) and cl(↵e) ⇠= cl(↵j)},

where ⇠= stands for isometric isomorphism. Computable members of a
class K of Polish metric spaces admit an e↵ective classification (up to
isometric isomorphim) if both I(K) and E(K) are hyperarithmetic.

1
A standard trick can be used to (computably) remove repetitions and replace ↵
with an injective ↵0

; see, e.g., [GMKT18]. Thus, without loss of generality the map

↵ : ! ! M will be assumed injective.



Remark 2. Note that ⇠= does not stand for computable isometric isomorphism. Of course, if
we wish to classify our spaces up to homeomorphism or quasi-isometry (etc.) then we should
adjust the interpretation of ⇠= accordingly. Definition 1 is an adaptation of a similar method
proposed in [GK02] for countable discrete computable structures. Cenzer and Remmel [CR99]
used index sets to measure the complexity of various properties of ⇧0

1 -classes. Although there
is not much in common between their results and the theorems discussed in the present article,
it is important that index sets had been used in computable analysis long before us.

Relativisation. To extend these methods beyond computable Polish
spaces we use relativisation. A structure ↵ : ! ! M is computable
relative to X if D+(↵) is computably enumerable relative to X. Using
structures computable relative to an oracle X, relativise the definitions
of I(K) and E(K) to X; the resulting sets will be denoted I

X(K) and
E

X(K). Usually, when we establish that, say, I(K) 2 ⌃
0
n, we can apply

relativisation to show I
X(K) 2 ⌃

X
n , and similarly for EX(K). Recall this

means that, for some recursive scheme R, we have

i 2 I
X(K) () (9x1) . . . (Qnxn)R(X;x1, . . . , xn, i),

where X is a set-parameter. It follows that the number of alternations
of quantifiers in (9x1) . . . (Qnxn)R(X;x1, . . . , xn, i) is an invariant of the
whole class. This motivates the following:
Definition 3. We say that that K admits an e↵ective classification if,
for every oracle X, both I

X(K) and E
X(K) belong to a some (fixed) level

of the hyperarithmetical hierarchy relativised to X.
The first results. Perhaps, the first non-trivial illustration of the pro-
posed approach to classification in the literature is the theorem below.
Theorem 4 (Melnikov and Nies [MN13]). The class Kcomp of com-

pact Polish metric spaces admits an e↵ective classification.

The proof of Theorem 4 relies on ideas of of Gromov [Gro07] and L!1!-
definability. The most important step of the proof is establishing that
every computable compact Polish metric space is �0

3-categorical ; the cat-
egoricity hierarchy will be discussed in the next subsection. Theorem 4
contrasts with:
Theorem 5 (Nies and Solecki [NS15]). The characterisation problem

for computable locally compact Polish metric spaces is ⇧
1
1 -complete.

It follows that for a given Polish space M, deciding if it is locally com-
pact is as hard as just checking the ⇧

1
1 definition of local compactness.

Thus, the class of locally compact Polish metric spaces does not admit
an e↵ective classification. The result formally confirms our intuition that
locally compact spaces are very hard to classify.

The categoricity hierarchy. We use the standard notion of a com-
putable map between computable Polish spaces; see, e.g., [Mel13]. The
definition below extends the classical notion of computable categoric-
ity [AK00] to Polish spaces.



Definition 6 ([Mel13]). A Polish space M is computably categorical
if for any two computable structures ↵ and � on M there is an isomet-
ric isomorphism between cl(↵) and cl(�) computable with respect to ↵

and �
2.

Examples of computably categorical spaces include [Mel13]: every Polish
space associated to a separable Hilbert space, Cantor space with the usual
ultrametric, and the Urysohn space. If we genralise Definition 6 by allow-
ing the isomorphism to be �

0
↵, the resulting notion of a �

0
↵-categorical

space is a direct adaptation of the classical notion of �0
↵-categoricity from

computable algebra [AK00].
How is this technical notion related to classification? If every member

of K is �0
↵-categorical and I(K) is hyperarithmetical then E(K) is hyper-

arithmetical too3. Our results tend to be easily relativizable to any oracle
X, and thus both I

X(K) and E
X(K) will usually be hyperarithmetical rel-

ative to X as well. This approach was used by Melnikov and Nies [MN13]
to prove Theorem 4. Clearly, �0

↵-categoricity induces a hierarchy, and
using a transformation from graphs to Polish spaces [GMKT18] it is not
hard to show that the hierarchy is proper in general.

We will return to discussing �
0
↵-categorcity later. First we discuss an-

other natural relativisation of Definition 6. It reveals a connection between
first-order definability and computable categoricity of spaces, in the spirit
of [AK00]. We say that a computable Polish space M = cl(↵i)i2! is rela-
tively computably categorical if any (not necessarily computable) structure
(�i)i2! computes an isometry from cl(�i)i2! onto cl(↵i)i2!. Greenberg,
Knight, Melnikov, and Turetsky [GMKT18] showed:

Theorem 7. A computable Polish metric space M is relatively com-

putably categorical i↵ for every ✏ 2 Q it admits a c.e. ✏-Scott family

consisting of first-order positive 9-formulae
4
.

It is crucial in the proof of Theorem 7 that the positive 9-formulae
define open sets.

Problem 8. Extend Theorem 7 to relative �
0
↵-categoricity. For that, an

adequate formal definition of relative �
0
↵-categoricity must be designed.

2
Here cl stands for the completion operator. Recall that the inverse of a computable

surjective isometry is computable too, thus the notion is symmetric.
3
Since an isometric image of a complete metric space is closed, saying that a �0

↵ map

is “onto” is arithmetical.
4
This means that ✏-automorphism orbits of tuples in M can be described by a (uni-

formly in ✏) c.e. family of positive first-order existential positive formulae in the

language (d<r, d>r)r2Q with finitely many “stable” parameters; a parameter is sta-

ble if there exist a ball such that any point from the ball can be used as a parameter

without changing the formula.



Banach spaces. All Banach spaces in this section are separable. What
is the most natural general approach to computability on Banach spaces?
Pour El and Richards [PER89] restrict themselves only to computable
structures which also compute the standard vector space operations. The
well-known result of Mazur and Ulam (can be found in [Sie52]) implies
that there is only one way to define the operations consistently with a
given norm so that we get a complete normed space. Does the result of
Mazur and Ulam hold computably? If the answer was “yes” then the
definition from Pour El and Richards [PER89] would be an overkill. In-
terestingly, Melnikov and Ng [MN16] showed that the e↵ective version
of Mazur-Ulam fails for the space of continuous functions on the unit
interval.

Problem 9. Give an optimal e↵ective analysis of Mazur-Ulam.

In the context of the present article, the above-mentioned result of Mel-
nikov and Ng justifies the use of the definition below which is of course
equivalent to the approach in Pour-El and Richards [PER89].

Definition 10. A separable Banach space B is computable if the asso-

ciated metric space admits a computable structure which computes the

vector space operations on B.

In the case of Banach spaces (over R) we modify Definitions 1 and 3
using the natural enumeration of all (partially) computable countable
normed spaces B0, B1, . . .. The relativisation principle still applies to this
approach. To save space we omit the definition; see [BMM]. Now to the
results.

Lebesgue spaces. Suppose we are given a computable Banach space B.
How hard is it to determine whether B is a Lebesgue space? In other
words, what is the complexity of the characterisation problem (Def. 1)
for Lebesgue spaces? The crude upper bound involves searching for a
(separable) measure space ⌦ and a real p which makes the space look
like L

p(⌦). The well-known Kakutani–Bohnenblus characterisation of
Lebesgue spaces in terms of Banach lattices ([Bohn40,Kaku41]) does not
seem to be of much help either. Brown, McNicholl and Melnikov [BMM]
have proven the following rather surprising result:

Theorem 11 (Brown et. al. [BMM]). The characterisation problem

for Lebesgue spaces is ⇧
0
3 .

How to reduce the unclassifiable brute-force complexity down to ⇧
0
3? Us-

ing a non-trivial and novel technique, McNicholl [McN17] proved that for



a computable real p, `p is �0
2-categorical

5. The proof of Theorem 11 ex-
tends these techniques to arbitrary Lebesgue spaces and combines them
with new ideas. We see that �

0
↵-categoricity helps again, though indi-

rectly.

Question 12 ([BMM]). Is the bound ⇧
0
3 from Theorem 11 tight?

The main obstacle in simplifying the upper bound is related to:

Question 13 (McNicholl). Suppose B ⇠= L
p(⌦) is computable. Does p

have to be a computable real? If yes, is it uniformly computable6?

It also follows from the main results of [BMM] that the isomorphism
problem for computable Lebesgue spaces is arithmetical (see Remark 17).
Although we do not know if the upper bounds are tight if p is not held
fixed, the results are relativizable to any oracle. Thus, we have:

Corollary 14. Separable Lebesgue spaces are e↵ectively classifyable.

Question 15. Estimate the complexity of the e↵ective classification prob-
lem for: (1) separable Hardy spaces, and (2) separable Sobolev spaces.

Question 16. For each n, is there�0
n+1-categorical but not�

0
n-categorical

Banach space? Same for Polish groups7.

A computable characterisation of C[0,1]. Suppose we are given a
description of a (separable) Banach space B. How hard is it to deter-
mine whether it is isomorphic to some fixed Banach space C? Within the
proposed framework, we can set K = {C} and measure the complexity
of the e↵ective characterisation problem {e : cl(Be) ⇠= C}. For example,
the separable Hilbert space `2 admits a low level arithmetical character-
isation: use the parallelogram law and compute a basis [PER89]. Also,
various natural Lebesgue spaces such as `3 admit arithmetical character-
isations, with some index sets complete at proper di↵erence levels such
as d-⌃0

2 [BMM].
Remark 17. In e↵ective algebra there are very few natural examples of index sets of structures
which are not complete at some level of the hyperarithmetical hierarchy; see, e.g., Problem 1
in [GK02]. Nonetheless, such estimates seem to be more common in computable analysis. For
example, suppose p � 1 is a computable real other than 2. Then the isomorphism problem for
the class of Lp spaces is co-3-⌃0

3 -complete [BMM].

5
In the case of Banach spaces, we of course must restrict Definition 6 to computable

structures which also compute the vector space operations. See [CMS19,BM19] for

further results on categoricity of Lebesgue spaces.
6
Currently, the best known uniform upper bound is �0

2 [BMM]. McNicholl [McNta]

has recently announced a partial positive solution for the case when p > 2, but he

also announced that the uniformity of computing p fails. Thus, we conjecture that

the upper bound in Theorem 11 is tight.
7
Such examples exist for Polish spaces, as follows from [GMKT18].



Recall that C[0, 1] is universal among all separable Banach spaces. Build-
ing on the earlier work in [MN16] and [Bro19], Franklin et al. [FHA+20]
have recently announced the following unexpected result:

Theorem 18 (Franklin et. al. [FHA
+
20]). The Banach space C[0, 1]

admits an e↵ective (arithmetical) characterisation.

Again, the result can be relativised to any oracle, but here it is not that
important since C[0, 1] is computable. The main technical lemma in the
proof states that C[0, 1] is �0

5-categorical.

Question 19. Calculate optimal bounds for the characterisation problem
and �

0
n-categoricity of C[0, 1].

Polish groups. Following Melnikov and Montalbàn [MM18], we say that
a (metrized) Polish group is computable if it admits a computable struc-
ture that computes the standard · and �1 on the group8. Fix a uniform
enumeration (Ge)e2! of all partially computable Polish groups. The def-
initions of the characterisation problem and the isomorphism problem
(Definition 1) should be adjusted accordingly. We note however that this
approach seems best suited for compact groups. This is because com-
pactness and totality of a (potential) group operation are both low-level
arithmetical properties [Mel18]. Thus, in the compact case the index sets
I(K) and E(K) will reflect the complexity of K rather than some patholo-
gies of coding.

Recall that compact Polish spaces admit an e↵ective classification
(Thm 4). How hard is it to classify compact Polish groups? Every compact
Polish group G contains the largest connected subgroup H which makes
G/H profinite. Thus, the classes of connected and profinite groups are
central to the general theory of Polish groups.

Theorem 20 (Melnikov [Mel18]). 1. The characterisation problems

for profinite and connected compact Polish groups are both arithmetical.

2. The topological isomorphism problems for profinite abelian groups

and for connected compact abelian groups are both ⌃
1
1-complete.

As usual, the result can be relativised to any oracle. It follows that recog-
nising whether a given group is profinite or connected compact is not
that hard (⇧0

2 - and ⇧
0
3 -complete, resp.), but the isomorphism problem is

8
Computability of the metric is obviously not enough. Unlike the Banach space case,

there is nothing like the Mazur-Ulam theorem for topological groups. For example,

every separable profinite group is homeomorphic to the computable Cantor space,

but obviously not every profinite group is computable. Perhaps, computability of
�1

can be dropped at least in some cases, but this has not yet been explored.



too hard even in the abelian case. In contrast with the previous results,
the main tool in the proof of Thm 20 is not �

0
↵-categoricity

9. Instead,
Melnikov proves a computable version of the celebrated Pontryagin du-
ality which is then used to apply e↵ective algebraic results [DM08,EG00]
to topological groups. Provably, the duality is e↵ective only when pass-
ing from discrete to compact groups [Mel18], but this half-e↵ectivity was
su�cinent.

Problem 21. (1.) Study �
0
↵-categoricity of Polish groups. (2.) Measure

the e↵ective classification problem for natural subclasses of compact Pol-
ish groups. (3.) What is the complexity of the Pontryagin dual of a com-
putable compact connected abelian group? (The profinite case is known.)

A local approach to global classification. We must emphasise that
the subdivision of the discussed results into local and global is somewhat
subjective. For instance, Melnikov and Montalbán [MM18] have suggested
an intermediate approach. Recall that a transformation space is a Polish
space together with a smooth action of a Polish group on the space. The
key observation is that the standard S1-transformation space of count-
able structures in a given finite language is actually computable [MM18].
Thus, the global classification problem for countable structures becomes
a local classification problem for points in a transformation space.

The use of topological groups sometimes makes proofs easier. For in-
stance, a technical result of Montalbán [Mon15] characterises uniformly
computably categorical structures (categorical relative to all oracles) in
terms of infinitary Scott sentences. Using transformation groups and the
old result of E↵ros [E↵65], the rather tricky argument from [Mon15] can
be simplified and generalised at the same time:
Theorem 22. Let (X,G, a) be a (not necessarily computable) transfor-

mation group, and x 2 X. The following are equivalent:

1. x is uniformly computably categorical on a cone;

2. the orbit of x is ⇧
0
2.

The theorem above is an explicit link between Polish groups, the Borel
hierarchy, the categoricity hierarchy, and classification problems.

Question 23. Is it possible to extend Theorem 22 to a (computable)
categoricity-theoretic description of⌃0

3-orbits in a transformation space10?
9
But there is again a tight connection with categoricity. Melnikov [Mel18] showed that

the characterisation problem for computably categorical recursive profinite abelian

groups ⇧0
4 -complete; see [Mel18] for the definitions.

10
Melnikov and Montalbán’s initial strong conjecture was that such a characterisation

in terms of non-uniform categoricity exists; alas, their proof contained an error

(spotted by Solecki).



3 Local classifications and hierarchies of functions.

Suppose M is a computable Polish space, such as C[0, 1] or the re-
als11. Fix some property P of points in M, and consider the index set
I(P ) = {e : xe satisfies P} of P , where (xe)e2! is an e↵ective enumera-
tion of all (partially) computable points in M. If the complexity of I(P )
is no simpler than the naive brute-force upper bound derived from the
definition of P , then we can conjecture that members of the space having
property P do not admit any reasonable classification. Such results are
usually relativisable to any oracle.

For example, Becher, Heiber, and Slaman [BHS14] showed that the in-
dex set of all computable real numbers normal to base 2 is ⇧0

3 -complete12.
Their proof is relativizable, and thus implies the earlier result of Ki and
Linton [KL94] who showed that the set of reals normal to base 2 is ⇧0

3-
complete. Becher and Slaman [BS14] later extended their techniques to
show that the index set of numbers computable to some base is ⌃

0
4 -

complete, and again the result can be fully relativised to any oracle.

Westrick [Wes14] gives a detailed index set analysis of Kechris and
Woodin’s di↵erentiability hierarchy for continuous functions in C[0, 1].
She showed that the index set of rank  ↵ computable functions in C[0, 1]
is ⇧0

2↵+1-complete, where ↵ is any computable ordinal.

The index set I(P ) does not have to use the enumeration of all com-
putable members in a class. For example, we could instead start with a
uniform enumeration of all polynomial time computable points (le)e2! of
the space; if we can still prove a completeness result restricted to (le)e2!
then this means that the property “x is polynomial time computable”
does not help to characterise when P holds on x. We illustrate this ap-
proach by a non-trivial example. Following [CSV13], we call f 2 C[0, 1]
regular to base 2 if the graph of f coded as a pair of binary strings is
recognised by a Büchi automation. Regular continuous functions are Lip-
schitz and also map rationals to rationals in linear time. Using quantifier
elimination one can express “f is regular” as a ⌃

0
2 -statement about f .

Franklin et al. [FHA+20] have recently announced:

11
We usually fix a “natural” computable structure on the space, such as the rationals

in R. For a computably categorical space (such as R) this assumption is of course

not necessary, while for spaces like C[0, 1] it is essential [MN16].
12

A number is said to be normal to base b if, for every positive integer n, all possible
strings n digits long have density b�n

. A number is (absolutely) normal if it is normal

to base b for every integer b greater than 1. Equivalently, a sequence is normal if

and only if there is no finite-state gambler that succeeds on it [SS72].



Theorem 24. Given a linear time computable Lipschitz f : [0, 1] ! R
with f(Q \ [0, 1]) ✓ Q, checking whether f is regular is a ⌃

0
2-complete

problem.

Remark 25. Working independently, Gorman et al. [GHK+19] have announced that every
continuous regular function has to be a�ne outside a measure 0 nowhere dense set. This
property can be added to the list of properties in the theorem above too.

It follows that none of the properties of regular functions known to
date helps to reduce the complexity of the definition of regularity.
Baire hierarchy and parallel Weihrauch reducibility. So far our
“local” results were restricted to continuous functions. If we want to ex-
tend the ideas beyond continuity, we need more ideas. We might have
some hope for reasonable classes of functions such as the Baire classes.
Recall that f is Baire class 0 i↵ it is continuous, and f is called Baire
n + 1 i↵ there is a collection {fi | i 2 N} of Baire class n functions such
that f(x) = limn fn(x), and this extends to limit ordinals in the obvious
way. Baire 1 functions are precisely the derivatives of di↵erentiable func-
tions. Baire functions are all Lebesgue measureable, and any Lebesgue
measureable function is the same as a Baire 2 function except on a set
of measure 0. Can we say more? In the below, we will concentrate on
classification for the Baire class functions.

Recall that Weihrauch reducibility [BG09] is defined as f W g to
mean there are computable h, k such that f(x) = h(x, g(k(x))). A more
general version of this is called parallel Weihrauch reducibility. The idea
is that to compute f(x) to within 2�n we might explore g(y), yet for f(x)
to within 2�m perhaps g(y0). For this new reduction we will write f T g.

Remark 26. This is motivated as follows. It is not reasonable to expect that for a general
reduction we should have a uniform map like W which takes arguments of f pointwise to
arguments of g determining the reduction. Turing reduction on sets, A T B, can use many
queries to B to determine A(n). In the case of continuous functions this can be viewed as as
the “parallelisation” of g; replace g with ! many copies of g. See [DDW] for a clarification.

Example 27. Consider the ↵-th jump function, j↵(x)(i) = x
(↵)(i), where

x
(↵)(i) is 0 if �x

i (i) does not halt and 1 otherwise. Then it is possible to
show that j1(x) T S0 where S0 is the step function which is 0 below 0
and 1 above.

In [DDW] Day, Downey and Westrick instigated an analysis of the clas-
sification of Baire functions using T . In that paper, they allowed real
parameters, the boldface version T. It is easy to show that f is Baire ↵ i↵
fTj

↵. Using recursion-theoretic techniques, Day, Downey and Westrick
[DDW] have proved:

Theorem 28. If ↵ is a constructive ordinal and a Baire function f is

not Baire ↵ then j
↵+1Tf , and if f is limit, and f is not Baire � for

� < ↵, either f⌘Tj
↵
, or j

↵
<Tf .



In [DDW], Day, Downey and Westrick refined T to look at analogs of
m- and tt-reductions; we omit the definitions13.The idea being that Post’s
Theorem (for example) puts ⌃

0
m complete sets above the other ⌃

0
m sets

via an m-reduction. We state the following satisfying classification result

Theorem 29 ([DDW]). 1. For all Baire functions f and g, either fmg

or gm � f . Hence if f is Baire ↵ then fmj
↵+1

.

2. If f is Borel and f is not Baire ↵, then either j
↵+1mf or �j

↵+1mf .

These new reductions had reflections in results from classical analysis to
give computable “explanations” for classical results. In [DDW] Day et.
al. showed (classical) Baire and Bourgain hierarchies of functions inter-
twine with the degree structures above. Kihara (to appear) has recently
extended the results above.

As we see the boldface version gives real insight into classical investiga-
tions, but it might be argued that a finer classification could be obtained
using no parameters. This is still an open challenge. Lots of open prob-
lems remain, particularly what would be the correct notion for lightface
versions.
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