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1. Introduction

A central problem in many areas of mathematics is the classification problem. For 
a class of structures K, this problem typically asks “Is there a way to understand or 
classify the structures in K up to isomorphism?” Often this classification involves de-
termining invariants which transform the question of whether A ∼= B into whether A
and B have the same invariants. Since “isomorphism type” is itself an invariant, we 
would expect useful invariants to make the classification problem simpler. Examples of 
classes with useful invariants include dimension for vector spaces, Baer invariants for 
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completely decomposable groups [4], and the Jones polynomials for knots. Mathemat-
ical logic provides the tools for understanding the isomorphism problems for various 
classes of structures. As we describe below, we can use mathematical logic to clar-
ify what we mean when we say “invariants should make the classification problem 
simpler,” and also to formalise what it means to have no simplifying invariants for a 
given class. Where classification is possible, we can use logic to calibrate precisely how 
hard the isomorphism problem is. In this article we use tools of computable structure 
theory [1,10] to produce a fine-grained algorithmic classification for a broad class of 
groups.

Computable structure theory offers several general approaches to the classification 
problem for a given class of structures; see [13]. Here we recall that all typical countable 
structures met in practice are naturally computably given, where a countable algebraic 
structure is computable if its domain and the operations are Turing computable [23,28]. 
The standard representation of the additive group of the rationals is computable, and 
a finitely presented group is computable if its word problem is decidable. The nicest 
classification of an isomorphism problem is one where we can decide if two structures 
are isomorphic; the isomorphism problem is algorithmically decidable. For instance, the 
isomorphism problem for finite abelian groups is clearly decidable, and furthermore all 
isomorphism types of such groups can be computably listed without repetition. Although 
the isomorphism problem for arbitrary finite groups is also decidable, it is still open 
whether it is computationally feasibly decidable; meaning that we can decide isomor-
phism in polynomial time, see, e.g., [3].

For many infinite structures we have no hope of deciding the isomorphism problem, let 
alone feasibly deciding it. In these cases we seek to understand how hard the isomorphism 
problem is using various hierarchies or by asking whether there is a way to injectively 
list the isomorphism types. A somewhat counter-intuitive fact is that a class can have a 
computable listing of isomorphism types even though the isomorphism problem in the 
class is not decidable; an elementary example is the class of countable vector spaces over 
a fixed computable field. After understanding the problem for computable structures, 
the process of relativisation to an arbitrary oracle allows us to understand the general 
isomorphism problem for arbitrary countable structures. We now elaborate on these 
concepts in more detail.

The isomorphism problem for a class K of structures is the set {〈i, j〉 | Ai
∼= Aj}

for some enumeration {Ae | e ∈ ω} of the computable members of the class we are 
interested in. The complexity of the isomorphism problem for a class K can be measured 
using various hierarchies such as the arithmetical and the analytical hierarchy [30]. For 
example, if we consider computable copies of the linear ordering of order type ω, the 
natural numbers, then the isomorphism problem classified by the halting problem, since 
access to the halting problem allows us to decide if x is the successor of y. Typically such 
results can be relativised to any oracle, which means that the oracle can be used as a 
parameter in the result. More formally, the “boldface” [31] versions of such results are not 
restricted to computable members of the class but can cover the whole class. For example, 
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in the case of torsion-free abelian groups the isomorphism problem is Σ1
1-complete [6]. 

The result can be relativised to any oracle, showing that the collection of reals that 
naturally code torsion-free abelian groups is analytic complete [6]. Σ1

1 sets are those which 
can be expressed as x ∈ A ⇐⇒ ∃fR(f, x) where R is some computable arithmetical 
relation, where the existential quantifier is quantifying over all the continuum many 
functions. Isomorphism is naturally Σ1

1 since we are asking “is there a function obeying 
certain properties from We to Wj?” Showing the index set is Σ1

1-complete amounts to 
showing that listing the isomorphism types of the structure is as hard as listing the 
isomorphism types of any countable structure. Hence, there can be no invariants which 
would simplify the isomorphism problem. This gives a computational “proof” that there 
are no reasonable invariants. The point is that if there are nice invariants like dimension 
for vector spaces, these invariants must simplify the isomorphism problem of the class. 
In the case of vector spaces, the problem becomes arithmetical since we only need two 
alternations of number quantifiers to decide what the dimension is. Hence logic blended 
with group theory allows us to answer Fuchs’ question of whether there are invariants for 
general torsion-free abelian groups. In contrast, for computable completely decomposable 
groups [4] the isomorphism problem is merely Σ0

7 [7]. The result means that the Baer 
invariants [4] for such groups are somewhat close to being Turing computable. Since Σ0

7-
hardness is an open question, we still have to understand how close to being computable 
they exactly are. The relativised version of this result can be stated in purely topological 
terms using the Borel hierarchy, confirming that the class of such groups is somewhat 
algebraically tame.

A nice algebraic classification sometimes leads to an injective enumeration of the 
isomorphism types in the class. That is, we also get a computable enumeration of com-
putable members of the class in which isomorphism types are not repeated, and which 
every computable member of the class is represented. For example, we can easily enu-
merate all isomorphism types of finitely generated abelian groups without repetition. All 
such groups naturally have a solvable word problem, therefore looking at the computable 
members of the class is not really a restriction. The classification of finite simple groups 
also leads to an injective enumeration of the isomorphism types of the class. For more 
examples, see [22]. As another example, if we consider the Downey and Melnikov [7] re-
sult on completely decomposable groups discussed above, with the help of a few iterates 
of the Halting problem, we can produce a list of all isomorphism types of computable 
completely decomposable groups without repetition (recall that the isomorphism prob-
lem for this class is merely Σ0

7). In contrast, it follows from the Σ1
1 completeness result 

[6] that no finite – indeed, no recursive transfinite – iterate of the Halting Problem is 
capable of enumerating all isomorphism types of computable torsion-free abelian groups 
without repetition.

Based on a similar intuition, Goncharov and Knight [13] suggested that a class of 
computable structures is tame if we have a way of computably listing the isomorphism 
types without repetition.
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Definition 1.1 ([13]). We say that a class K of structures has a Friedberg enumeration
if there is a computable listing A1, A2, . . . of all isomorphism types of the computable 
members of K without repetition.

Formally, there is a computable listing A1, A2, . . . of computable structures such that 
(i) Ai is a computable member of K for all i, (ii) for every i (= j, we have Ai ! Aj , and 
(iii) for every B ∈ K, if B is computable then B ∼= Ai for some i.

If a class has a Friedberg enumeration, then we can regard it as “classified” in this well-
defined sense, in spite of the actual isomorphism problem being possibly quite complex. 
The inspiration for the name “Friedberg enumeration” comes from Friedberg’s proof 
[11] that the computably enumerable sets can be listed without repetition. For sets, 
“isomorphism” means equality, and Friedberg’s proof shows that a class of structures can 
have an undecidable isomorphism problem (the set {〈i, j〉 | Wi = Wj} is Π0

2 complete), 
yet there is a way to give a computable list of all its members without repetition. Another 
example, albeit a trivial one, is ω as a linear ordering, whose Friedberg enumeration 
consists of a single element, N, yet the isomorphism problem is Σ0

1-complete.
Goncharov and Knight [13] pointed out that classification via enumerations tends to be 

technically rather challenging. There is no algebraic structure on computably enumerable 
sets, yet Friedberg’s original proof [11] involves several techniques which were novel – if 
not revolutionary – at that time. Unsurprisingly, even adding very little algebraic content 
into the class of structures can make the Friedberg enumeration problem a lot harder.

In our previous work [9] we solved a problem of Goncharov and Knight [13]. We 
produced a Friedberg enumeration of the class of computable equivalence structures. The 
[9] result is significantly more complicated than enumerating the computably enumerable 
sets since determining whether two computable equivalence structures are isomorphic is 
Π0

4-complete, compared to Π0
2 for determining equality of computably enumerable sets.

In constructing a Friedberg enumeration one usually has to dynamically measure
whether a given computable structure is isomorphic to another one. The more com-
plex the isomorphism problem, the more difficult it is to measure this. Goncharov and 
Knight [13] suggested that there is no Friedberg enumeration of computable equivalence 
structures because the isomorphism problem is Π0

4 which is very complicated to guess 
dynamically. Our solution [9] requires essential use of an advanced priority argument, 
akin to the 0′′′ technique. In this paper we advance our techniques even further. Using 
three separate constructions combined into a single proof, we will produce Friedberg enu-
merations for broad classes of abelian groups in which the isomorphism problem could 
be at an arbitrarily high finite level of the arithmetical hierarchy.

Because of the relationship between abelian groups and equivalence structures, the 
Friedberg enumeration of computable equivalence structures also gives a Friedberg enu-
meration of all computable abelian p-groups of Ulm type 1. More specifically, given a 
computable equivalence relation E we can uniformly computably produce an abelian p-
group AE of Ulm type 1 as follows. For each equivalence class in E having size λ ∈ ω∪{∞}
produce a cyclic or quasi-cyclic group Zpλ , and then take the direct sum of all such sub-
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groups, one for each equivalence class. It is not difficult to see that the map E → AE is 
bijective on computable isomorphism types of equivalence relations and abelian p-groups 
of Ulm type 1. Thus, the main result of [9] leads to a Friedberg enumeration of com-
putable abelian p-groups of Ulm type 1. It is natural to ask whether computable abelian 
p-groups of higher Ulm type also possess a Friedberg enumeration.

The goal of the present paper is to prove the following result.

Main Theorem. For each natural number n > 0 there is a Friedberg enumeration of all 
computable abelian p-groups of Ulm type ≤ n.

We remark that this gives the first known examples of algebraically nontrivial classes 
with infinite members having a Friedberg enumeration. We emphasize that the groups 
from the Main Theorem are not necessarily reduced. It can be shown that, for each 
fixed n, the reduced members of the class do not possess a Friedberg enumeration [13]. 
However, the fact that the groups are not reduced also adds a great deal of complexity 
to the argument. It is not hard to show that the isomorphism problem for groups in 
the theorem is Π0

2n+2-complete. We use a modification of the jump inversion technique 
from [2] to partially reduce the situation to the case of equivalence structures. Our proof 
relies on two priority arguments which will be non-trivially combined. The main ideas 
in this argument are built upon our previous work on equivalence structures, as well as 
the work of Ash, Knight and Oates [2], along with some new devices we introduce here. 
We leave open the question of whether there is a Friedberg enumeration of the class of 
abelian p-groups of greater Ulm types, e.g., of all groups of type < ω. Countable abelian 
p-groups are exactly the Pontryagin duals of abelian pro-p groups. Pontryagin duality is 
injective on the isomorphism types of countable abelian and compact abelian groups [27]. 
Thus, the Ulm invariants of an abelian p-group give rise to pro-Ulm invariants of the 
respective pro-p dual; see, e.g., [18] for an explicit definition. In [25] the second author 
showed that the functor uniformly maps computable abelian p-groups into recursive 
pro-p groups [25], bijectively on isomorphism types. We have:

Corollary 1.2. For each natural number n > 0 there exists a Friedberg enumeration of 
recursive pro-p abelian groups of pro-Ulm type ≤ n.

1.1. Overall structure of the paper

The rest of the paper is devoted to our technical proof of the Main Theorem. First, 
in Section 2 we state and discuss all known results from the literature on computable 
abelian groups which will be needed in the proof. Next, in Section 3, we prove the main 
technical proposition from the unpublished paper [2]; see Proposition 2.6. Our proof 
of Proposition 2.6 is slightly different from the proof in [2]. In Section 4, we prove a 
certain modified version of Proposition 2.6 which will be used in our proof of the Main 
Theorem.
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In Section 5 we informally outline the construction which produces the desired 
Friedberg enumeration. The construction is split into several modules and phases. In 
Sections 6, 7, 8, and 9 we describe and verify various submodules and parts of the 
construction. Finally, in Section 10, we will put all these pieces together into a formal 
construction and its verification.

2. Preliminaries

In this paper all groups are at most countable abelian p-groups for some fixed p. Recall 
that the p-height hp(a) of an element a of an abelian p-group is the supremum over all 
n such that pny = a has a solution in the group. Given an abelian p-group A, define 
A′ = {a ∈ A | hp(a) = ∞}, A(δ+1) =

(
A(δ))′, and take the intersection of Aβ over β < α

for a limit ordinal α. (Here A′ should not be confused with the halting problem relative 
to A.) For a countable A, the sequence must stabilize at some countable ordinal α called 
the Ulm type of A; in this case A(α) is equal to the maximal divisible subgroup of A. It 
is well-known that the maximal divisible subgroup of A detaches as a direct summand 
of A, and also itself splits into a direct sum of quasi-cyclic groups Zp∞ . Here Zp∞ is the 
direct limit of the linearly ordered system of all finite cyclic p-groups under the natural 
inclusion.

2.1. Equivalence structures and p-groups of Ulm type 1

If α ≤ 1, meaning that A′ = A′′, then Kulikov’s Criterion (see page 171 of [21]) 
implies that the p-group A splits into the direct sum of its finite cyclic and infinite quasi-
cyclic subgroups. Thus, each group G of Ulm type ≤ 1 is naturally associated with an 
equivalence structure EG, as follows. The correspondence is formed by replacing a cyclic 
or quasi-cyclic summand Zpλ by an equivalence class of size λ. Note that this functor 
is well-behaved on isomorphism types because any two complete decompositions of Ulm 
type 1 abelian p-groups are isomorphic (as decompositions). The functor is also clearly 
bijective on isomorphism types.

The Ulm factors A(δ+1)/A(δ) of A are themselves of Ulm type 1, and therefore they 
can be described by invariants similar to those for equivalence structures. The ordinal 
sequence of such invariants indexed by δ < α gives the Ulm invariant of A; the invariant 
completely describes the isomorphism type of A [15].

It is not hard to see that the functor G → EG defined above is also bijective on 
computable isomorphism types; see, e.g., [24]. It is clear that passing from an equiv-
alence structure E to the corresponding group GE is a uniformly effective process. 
In particular, it follows that the Friedberg enumeration of all computable equivalence 
structures produced in [9] can be uniformly transformed into a Friedberg enumera-
tion of all computable abelian p-groups of Ulm type 1. In this enumeration, each 
group has a computable complete direct decomposition into cyclic and quasi-cyclic sum-
mands.
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It is far less clear that going from Ulm type 1 group G to the respective equivalence 
structure EG is also uniformly effective; this is a relatively new result [26] and its proof 
is not entirely straightforward. Although we could avoid using the proposition below in 
its full power, it will be very convenient in the construction.

Proposition 2.1 ([26], Prop. 3.4). The functor G → EG defined above is uniformly ef-
fective. Furthermore, regardless of the Ulm type of the input abelian p-group G, we can 
guarantee that the output of the uniform procedure is always an equivalence structure.

Note that in the proposition above G does not have to be reduced or infinite. If G is 
not reduced or not of Ulm type 1, then EG will have infinite classes.

Remark 2.2. We will often use the uniformity of the correspondence G ↔ EG without ex-
plicit reference. Thus, groups of Ulm type 1 will be identified with equivalence structures 
(or vice versa) when it is convenient.

2.2. Basic trees

While groups of Ulm type 1 are very similar to equivalence structures, groups of higher 
Ulm type resemble trees. We will use the technique of p-basic trees to work with abelian 
p-groups having Ulm type larger than 1.

Definition 2.3 ([29]). A p-basic tree is a set X together with a binary operation pn · x of 
the sort {pn : 0 < n < ω} ×X → X such that:

(1) there is a unique element 0 ∈ X for which p · 0 = 0,
(2) pk · (pm · g) = pk+m · g, for all g ∈ X and k, m ∈ ω, and
(3) for every element x ∈ X, there is a natural number n with pn · x = 0.

If a prime p is fixed, then we think of a p-basic tree as a rooted tree with 0 being the 
root. Given a p-basic tree X, one obtains a p-group G(X) as follows: The set X \ {0}
is treated as the set of generators for G(X), and we add px = y into the collection of 
relations if p ·x = y in X. Every countable abelian p-group is generated by some p-basic 
tree [29]. Each element of the group G(X) can be uniquely expressed as 

∑
x∈X mxx, 

where mx ∈ {0, 1, . . . , p − 1}. Although we will usually deal with combinatorial trees 
which are subsets of ω<ω, each such tree can be interpreted as a p-basic tree. Note that 
the root must always be in the tree, for every group must contain at least the neutral 
element 0.

Non-isomorphic trees can produce isomorphic p-groups. Here we will not give a com-
plete description of the congruence relation ∼ on rooted trees which is defined by the 
rule: T0 ∼ T1 if and only if the groups G(T0) and G(T1) are isomorphic. See [29] for a 
detailed analysis of ∼.
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Suppose that T is a p-basic tree viewed as a rooted tree. We call a finite chain of 
nodes simple if it is isolated, i.e., every node along the chain has at most one successor. 
Consider the following procedure:

“Take a simple chain extending v ∈ T, detach it, and
attach this chain to the root of T.”

The procedure is called stripping. If the tree rank of v does not change after stripping, 
then the stripped tree T1 and the original tree T give rise to isomorphic p-groups: G(T1) ∼=
G(T ). This process can be iterated. Informally speaking, we can replace infinitely many 
simple chains at once (while preserving tree ranks), and obtain a fully stripped tree
representing the same group. (The only restriction is that the tree-ranks of nodes in the 
tree must be preserved under this transformation.) For example, a fully stripped tree for 
a reduced p-group of Ulm type 1 is just a collection of finite simple chains attached to 0.

Using this technique, Ash, Knight, and Oates [2] proved the following important 
result. Recall that a total function f is called X-limitwise monotonic if, for some total 
X-computable g we have f(x) = supz g(x, z), for all x; see [19,5].

Theorem 2.4 (Ash, Knight, and Oates [2]; Khisamiev [16] and [14] for N = 1). Suppose 
that A is a countable reduced p-group of Ulm type N < ω. Then the following conditions 
are equivalent:

(1) A has a computable copy.
(2) A has a computable p-basic tree representing it.
(3) (a) For every i < N , the character χ(Ai) is a Σ0

2i+2 set, and
(b) for every i < N , the set

#Ai := {n : (n, 1) ∈ χ(Ai)}

is 0(2i)-limitwise monotonic.

The basis of induction in the proof of this theorem essentially says that abelian p-groups 
of Ulm type 1 have the same computability-theoretic and algebraic invariants as com-
putable equivalence structures; this case is rather simple and has been known for several 
decades [14], see also the surveys [24,17]. The case of Ulm type n > 1 is significantly 
more difficult. To explain what happens in this case, we need several definitions.

Definition 2.5. We say an abelian p-group H of Ulm type 1 proper if it is reduced 
(i.e. H ′ = 0) and furthermore the sizes of the finite cyclic summands in its full direct 
decomposition are unbounded in size.

The inductive step in the proof of (3) → (2) of Theorem 2.4 uses a functor that allows 
us to uniformly pass from a ∆0

3 abelian group F represented by a p-basic tree and a 
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proper H to a computable abelian p-group TH(F ) with the properties (TH(F ))′ ∼= F

and TH(F )/(TH(F ))′ ∼= H. By induction, we will have already proven that F can be 
represented by a ∆0

3 p-basic tree. It is well-known that each ∆0
3-tree can be represented as 

a Π0
2-subtree of ω<ω, and uniformly so. We identify F with the respective Π0

2-tree. We also 
identify a proper abelian p-group H with the corresponding equivalence structure. Under 
this correspondence, an equivalence class of size n will represent a cyclic summand of 
order pn. Recall that this correspondence is also uniformly effective; see Proposition 2.1. 
Having in mind the uniform correspondence H ↔ EH , we will abuse notation and write 
H for EH . Since H is proper, the respective equivalence structure EH will have only 
finite classes, but the sizes of these classes will be unbounded.

Proposition 2.6 (Ash, Knight and Oates [2]). There is a uniform procedure which given 
a computable copy of a proper H and a Π0

2 p-basic tree F , outputs a computable p-basic 
tree TH(F ) with the properties (TH(F ))′ = F and TH(F )/(TH(F ))′ ∼= H.

It is not difficult to see that the harder implication of Theorem 2.4 follows from the 
above-mentioned basic case and Proposition 2.6. Unfortunately, all known proofs of the 
proposition are combinatorially rather involved.

The paper [2] was not published because the authors learned of a similar result of 
Khisamiev. The problem with Khisamiev’s published proof [16] is that it does not use 
p-basic trees and is extremely hard to follow, verify, or modify. Moreover, it is not even 
clear if it is completely correct. Although a description of TH(F ) using p-basic trees 
can be found in [24,8], none of these published descriptions can be viewed as complete 
proofs. We will need a minor modification of the original proof of the proposition. Thus 
we decided to give a detailed proof of Proposition 2.6; it is contained in Section 3 below.

3. Proof of Proposition 2.6

We split the exposition into several parts, starting from a very informal idea and then 
adding more details later.

3.1. An informal idea

We remind the reader that F ∈ Π0
2 if and only if there is a computable relation R, 

such that x ∈ F if and only if ∀s∃tR(x, s, t). We say that “x fires” for the first time if 
R(x, s, t) holds for some t, and more generally, x fires the for the n-th time if it has fired 
n-1 times and R(x, n, t) is observed to hold. Thus, x ∈ A if and only if it fires infinitely 
often. If x ∈ A then we say that the Π0

2 outcome holds, and otherwise we say that the 
Σ0

2-outcome holds.
We intend to build TH(F ) as follows. If a node x ∈ ω<ω looks in F (when represented 

as a Π0
2 p-basic tree), then we make progress in driving its tree-rank to infinity. We do 

this by attaching more extra finite simple chains to x when the Π0
2-predicate describing 
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F “fires”; the sizes of the new simple chains we attach are taken from the sizes of 
summands in H. (Recall that we identify H with the equivalence relation, thus the 
complete decomposition of H is computable.) If x looks like it is not in F we stop 
attaching new chains to x.

The obvious difficulties. There are of course several obvious difficulties with the rough 
idea outlined above. First of all, the sizes of classes/summands in H are not given as a 
computable or a computably enumerable set, and therefore they need to be guessed and 
updated at later stages of the construction after they are attached to a node. Note that 
they can only grow in length, for otherwise the tree will not be computable. Secondly, 
a class of some fixed size may occur in H more than once, and this must also be taken 
into account. For instance, if H has exactly 5 classes of size 3 then, up to stripping, 
TH(F ) must also have exactly 5 chains of length 3. Finally, we could have added a few 
extra finite chains to x but then x will never fire again. We must understand how such 
Σ0

2-outcomes will effect the isomorphism type of the output and what has to be done to 
control these effects.

3.2. The elementary case: computable sizes without repetition

Consider the easy but illustrative case in which the sizes of classes/summands in H
have no repetition and furthermore form a computable set. Under this assumption we 
do not have to worry about updating the lengths of chains, and it is not necessary to 
monitor the multiplicity of each class/summand in H.

3.2.1. An informal discussion
Under the above assumptions on H it is not hard to produce TH(F ) by implementing 

the informal idea. However, even in this simple case we must be careful of the Σ0
2 outcome 

x /∈ F . What we have is a list H of acceptable finite chains. If x fires infinitely often 
then we will need an infinite tree of extensions below x, thus driving the tree-rank 
of x to infinity. This is done using sizes in H. However, if x only fires finitely often 
we need to make sure that we have not introduced new paths which kill the property 
TH(F )/(TH(F ))′ ∼= H. The fact that x might fire finitely often means that there will 
be a finite part of T which needs to correspond to simple paths of lengths in H which 
means that they are irrelevant after stripping.

We illustrate this situation in the following example.

Example 3.1. Suppose px = 0, i.e., it is an immediate successor of the root node in ω<ω. 
Assume that the Π0

2 predicate has “fired” on x, i.e. a further instance of the Π0
2 event 

“x ∈ F” has been observed. Suppose that we have used a simple chain of length 3 on x. 
This chain corresponds to a class of size 3 in H. However, imagine that we will never get 
to add further finite simple chains to x because the predicate will never fire again on x. 
As the result, we will end up with a finite simple chain of length 4. In the group that 
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we will have constructed, it will correspond to a cyclic summand of order p4. But there 
may be no equivalence class of size 4 in H, and thus TH(F )/(TH(F ))′ ! H.

This problem is quite easy to overcome. Instead of adjoining a chain of length 3 to x, 
attach a chain of length 2. If later x fires again, use some longer class from H, say, of 
size 17. Attach a chain of length 16 to x and extend that old chain of length 2 attached 
to x by one extra node. This way we will form a simple chain of length 3 having a longer 
chain next to it. At this stage, the subgroup generated by all the mentioned nodes will 
be isomorphic to Zp17 ⊕ Zp3 which is consistent with the sizes in H.

There is another problematic scenario which must not be overlooked; it is explained 
in the example below.

Example 3.2. At stage s we have adjoined a very long auxiliary chain to σ because the 
predicate has fired on σ. Suppose τ extends σ, and that τ was thought to be in F for 
a few stages before s. Thus, it is possible that the previous longest auxiliary chain ξ′

that we saw in the construction prior to stage s was attached to τ . It must be of length 
n − lth(τ) corresponding to some size n in H (where lth(τ) denotes the length of τ), for 
otherwise we would face the problem outlined in Example 3.1 above.

But as the result of our action on σ, up to stripping, the longest auxiliary chain 
attached to τ will be transformed into a simple chain of length n − (lth(σ) − lth(τ))
and not n, thus potentially upsetting the isomorphism type of the group spanned by 
T (if τ never fires again). The simplest solution here would be to extend the auxiliary 
chain attached to τ to a slightly longer chain. This is done by lengthening it using by 
lth(σ) − lth(τ) extra nodes.

Finally, there is another situation similar to that explained in the example above 
which may also result in upsetting the isomorphism type of the group. Consider our final 
example below.

Example 3.3. In the notation of the previous example, suppose τ is an initial segment of 
σ of length d. At stage s we adjoin a very long auxiliary chain to σ because the predicate 
fires on σ, but the previous longest auxiliary chain ξ′ is attached to τ . It must be of 
length n − lth(τ) for some corresponding n that occurs in H.

Up to stripping, the longest auxiliary chain attached to τ is now a simple chain of 
size n − lth(σ) and not n. To fix this issue extend this auxiliary chain by lth(σ) extra 
nodes, as before.

Assuming the sizes of classes in H form a computable set and have no repetition, we 
generalise the examples above into the simple construction below.

3.2.2. Formal details
Fix a computable copy of ω<ω viewed as an infinitely branching tree with its root the 

empty string e located at its top. Identify F with a Π0
2-subtree of ω<ω such that each 
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σ ∈ ω<ω has infinitely many successors which do not belong to F ; furthermore, we can 
assume that this set of successors of σ outside F has an infinite computable subset of 
nodes. This subset will be used to attach external chains whose sizes will be taken from 
H. These external chains will be called auxiliary. Each auxiliary chain will be associated 
with exactly one class/summand in EH ↔ H having size greater or equal to the length 
of the auxiliary chain.

We also fix a Π0
2 predicate S and a computable predicate R such that S = {x :

∃∞zR(x, z)}. Whenever a new existential witness for z is found in R, we say that S
“fires” on z. We identify finite strings with their computable indices, and we also assume 
that S fires on σ implies that S has also fired on every predecessor of σ at least once 
again. Without loss of generality, assume that at every stage exactly one node of ω<ω

fires. Also recall that recall the empty string e belongs to F .

Construction (the elementary case). Initially, at stage 0, set U = ∅ and T0 = TH(F )[0] =
{e}. At stage s, perform the following actions.

Suppose σ has fired. By our assumption, each initial segment τ of σ fired at least once 
again at some earlier stage. Let U = {u1, . . . , us} be the set of sizes in H which have 
been declared used in the construction so far.

Consider the subtree Ts−1 = TH(F )[s − 1] of ω<ω listed by the end of the previous 
stage s-1, and let Ks be the subtree of Ts−1 rooted in σ (which has just fired).

(1) Fix a number m (at least twice larger than any number mentioned so far) from the 
set of computable sizes that occur in H.

(2) Attach a chain of length m − lth(σ) to σ.
(3) If there is an auxiliary chain of length nj − lth(σ) associated with a size nj ∈ U and 

attached to σ, then enlarge this simple auxiliary chain to one of length nj .
(4) Suppose there is an auxiliary chain ξ attached to some τ extending σ which is 

associated with some nk ∈ U but whose length is not equal nk. If there are no 
such chains then do nothing. If lth(ξ) = nk-lth(σ) or longer, then again do nothing. 
Otherwise, suppose lth(ξ) = nk-d, where d < lth(σ) (cf. Example 3.3). In this case 
extend this auxiliary chain by adjoining lth(σ)-d extra consequent nodes to the end 
of it. (The reader will of course notice that (3) can be incorporated into (4) by 
allowing τ = σ; we however feel that this would make the exposition a bit more 
cryptic.)

Let k be the smallest among the sizes that occur in H but has not yet been declared 
used in the construction. To complete the stage, adjoin a simple auxiliary chain of size k
to the root e of Ts−1, associate the new auxiliary chain with k in H, and also enumerate 
k into U . Finally, define TH(F )[s] to be the extension of TH(F )[s − 1]; it will be equal 
to the collection of all auxiliary chains and their prefixes/predecessors that have been 
defined by the end of stage s. Go to the next stage.
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Verification (the elementary case). It is clear that the tree-rank of a node in the fixed 
representation of ω<ω is infinite if and only if the node lies on the Π0

2 subtree F . It is 
also clear that T = ∪sTs is a computably enumerable subtree of ω<ω; using the standard 
technique we can transform it into a computable one. Thus, it remains to verify that the 
abelian p-group spanned by T has the correct isomorphism type.

For convenience we will abuse notation and identify trees with the respective groups, 
and we will not distinguish equivalence structures from the respective p-groups of Ulm 
type 1.

We must verify that, up to stripping, the nodes of finite tree-rank form a copy of H. In 
other words, the fully stripped version of T must contain only finite chains of lengths that 
occur in H. Making sure that T/T ′ ∼= H was the main point of performing substages 
(1) − (4) at stage s. We will argue that the actions performed at substages (1) − (4)
guarantee that the following properties hold:

(P1) The fully stripped version of the finite tree Ts is composed of simple chains having 
sizes/lengths that occur in H.

(P2) If a node σ ∈ Ts is in F , then all finite auxiliary chains which are attached to σ in 
Ts, except for at most one (call it exceptional for σ at s), have sizes/lengths that 
occur in H.

(P3) If ξ is an exceptional auxiliary chain for σ in (P2) at stage s, and x ∈ F , then there 
is a stage t > s after which ξ is extended to a chain of length that is mentioned 
in H; after this stage this auxiliary chain will never be exceptional for σ (or any 
other τ) ever again.

The point of attaching a simple chain of length m − lth(σ) to σ (and not of length m) 
was to ensure that the bad scenario explained in Example 3.1 does not occur in Ts. Recall 
that m was picked very large, and therefore m − lth(σ) is much longer than any other 
chain that may currently be in Ts−1. Thus, after a complete stripping of Ts, this new 
auxiliary chain will remain attached to σ, and these two combined will form a simple 
chain of length m as desired.

Note that attaching a very long new auxiliary chain to σ may result in upsetting 
(P1), as explained in Examples 3.2 and 3.3. Our actions at substages (3)–(4) were essen-
tially formalisations of the straightforward strategies outlined informally in Examples 3.2
and 3.3. Thus, a calculation of lengths of simple chains at each stage shows that (P1) 
holds at every stage.

To see why (P2) holds, note that the predicate will fire infinitely many times on σ. 
Thus, there will be infinitely many auxiliary chains attached to σ in the limit. By in-
duction on a stage, at every stage at most one such auxiliary chain attached to σ can be 
exceptional, i.e., may be unequal in length to the respective size in H. But at the stage 
at which the predicate fires for σ again this chain will be made equal to the respective 
size in H according to the instructions at substage (2). This proves (P3).
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Conditions (P2) −(P3) show that, up to stripping, the nodes of infinite rank contribute 
only chains of lengths that occur in H. Recall that the empty string is assumed to be 
in F ; it corresponds to zero of the group spanned by F (and by T ). Thus, each eventually 
abandoned finite piece Γ of T (due to the Σ0

2-outcome) is attached to some node of F . 
Each node of F will have arbitrarily long auxiliary chains adjoined to it, and therefore 
there is a stage t such that, after t, Γ can be fully stripped off T into a union of finite 
simple chains. By (P1), the sizes of these chains occur in H. Finally, our actions at 
the beginning of every stage ensured that no size that occurs in H is missed in T/T ′. 
This finishes the verification in the elementary case when sizes of classes in H form a 
computable set.

3.3. The general case

The original proof in [2] used limitwise monotonic functions; recall that a function g is 
limitwise monotonic if g(x) = supz f(x, z) for some total computable f of two arguments. 
We will exploit the uniformity of the correspondence H ↔ GH (see Proposition 2.1) and 
will not distinguish between an equivalence structure H and the respective group GH . 
This identification allows us to completely eliminate limitwise monotonic functions from 
the construction. The proof of Proposition 2.1 is not straightforward; so the combina-
torics related to limitwise monotonicity has not mysteriously vanished, they just got 
absorbed into this proof.

3.3.1. The main difficulty
The difference with the elementary case of a computable set is obvious. Now, when 

we attach an auxiliary chain, we cannot guarantee that the size of the respective class in 
H is final. In particular, we may have introduced a chain ξ which was very long, but at 
some later stage some earlier auxiliary ξ′ may outgrow ξ. This introduction of ξ results 
in difficulties in the spirit of Examples 3.2 and 3.3.

3.3.2. An informal description of the solution
Imagine that you knew ahead of time that the first auxiliary chain corresponds to 

the smallest class in H, the second auxiliary chain that we added corresponds to the 
second smallest, etc. For simplicity, further assume that sizes of classes in H have no 
repetition. Recall that the comparison of sizes of auxiliary chains is the main driving 
force of the construction in the elementary case of a computable set. In the verification 
of the elementary case we do not even use these sizes, as long as we can guarantee that 
the new chain is much longer than all other chains we have seen so far.

So, assume that the final sizes of classes contain no repetition and can be computably 
compared, even though their final sizes are merely approximable from below. In this 
case we would simply run the construction of the elementary case, but we will have to 
update the lengths of auxiliary chains when the respective classes increase in size, as 
follows.
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If a chain ξ has to be grown larger than the current size of some ξ′, but we know ξ′

will correspond to a larger class in the limit, we just do nothing with ξ until ξ′ grows 
too. Since there are at most finitely many such ξ′, ξ′′, . . ., this is only a finite delay. 
Under this strong assumption on comparability of sizes, the construction described for 
the elementary case goes through with only very minor adjustments.

Of course, in general we cannot guarantee that the final sizes of classes in H can 
be compared effectively. However, we do know that H contains arbitrarily large finite 
classes. Thus, we can implement the following re-targeting procedure.

3.3.3. An informal description of re-targeting
At every stage each auxiliary chain ξ is associated with some class in H whose size 

it is monitoring, let t(ξ) denote this class. Each auxiliary chain is also given an index
according to the stage at which it is introduced, with smaller indices corresponding to 
earlier stages. Write i(ξ) for the index of ξ.

Re-targeting: If t(ξ) has increased in size then the lengths of ξ and of ξ′, such that 
i(ξ′) > i(ξ) and ξ′ is not attached to e, will have to be updated. For ξ, simply add as 
many extra nodes as there are new points in t(ξ). For each ξ′ with i(ξ′) > i(ξ) and 
which is not attached to the root e, update t(ξ′) and set it equal to the first found 
new class in H which currently is larger than t(ξ′′) for every ξ′′ with the property 
i(ξ′′) < i(ξ′) (these include ξ). Since H contains arbitrarily large classes, we keep 
enumerating H until such a class is found.

Since some classes may be left out of the range of t, we introduce new auxiliary chains, 
associate them with the missed classes, and attach them to the root e. Since the root 
is guaranteed to be in the tree F there is no need to be careful with the way they are 
approximated. In particular, we will not have to re-target these chains ever again in the 
future. In the general case the sizes of classes in H may of course contain repetition, but 
is not too problematic; in fact, we do not even have to do anything special to control 
the repetition. All we need to do is to make sure that h is bijective. (This is the main 
advantage of using an equivalence structure instead of a limitwise monotonic function.)

3.3.4. Formal details
Recall that we are given a Π0

2 subtree F of a special copy of ω<ω, and we also are 
given an abelian reduced p-group H of Ulm type 1 in which sizes of elementary cyclic 
summands are unbounded. As usual, H can be uniformly replaced with a computable 
equivalence structure; we identify H and this structure.

Construction (the general case). Initially, at stage 0, set U = ∅ and T0 = TH(F )[0] = {e}. 
At stage s, go through the four phases described below.

Phase 1: Updating ranks of nodes. Without loss of generality, at every stage exactly 
one node of ω<ω fires (recall e ∈ F ). Suppose σ has fired. By our assumption, each initial 
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segment τ of σ fired at least once again at some earlier stage. Let U = {u1, . . . , un(s)}
be the set of classes in H which are currently in the range of h, and let ξ1, ξ2, . . . , ξn(s)
be simple auxiliary chains with t(ξi) ∈ U and having indices 1, 2, . . . , n(s), respectively.

Consider the subtree Ts−1 = TH(F )[s − 1] of ω<ω enumerated at the end of the 
previous stage s-1, and let Ks be the subtree of Ts−1 rooted in σ (which has just fired).

(1) Fix an m larger than any number mentioned so far and so that m is equal to the 
size of some class of H which is currently outside of the range of t; if no such large 
class is seen in H at the stage, do several extra steps in the enumeration of H until 
such a class is found.

(2) Attach a new chain ξs+1 of length m − lth(σ) to σ.
(3) If there is an auxiliary chain of length nj − lth(σ) associated with a size nj ∈ U and 

attached to σ, then enlarge this simple auxiliary chain to one of length nj .
(4) Suppose there is an auxiliary chain ξ attached to some τ extending σ which is 

associated with some nk ∈ U but whose length is not equal nk. If there are no 
such chains then do nothing. If lth(ξ) = nk-lth(σ) or longer, then again do nothing. 
Otherwise, suppose lth(ξ) = nk-d, where d < lth(σ) (cf. Example 3.3). In this case 
extend this auxiliary chain by adjoining lth(σ)-d extra consequent nodes to the end 
of it.

Phase 2: Re-targeting. Suppose i < s is least such that t(ξi) has grown in H since 
the previous stage. For ξi, add as many extra nodes as there are new points in t(ξi). For 
each j > i and which is not attached to the root e, update t(ξj) and set it equal to the 
first found new class in H whose index is larger than the index of the current t(ξj) and 
which currently is larger than t(ξk) for every k < j; enumerate H until such a class is 
found.

Phase 3: Bookkeeping. Let u be the smallest among the classes that occur in H which 
is currently outside of the range of h. Adjoin a simple auxiliary chain ξ of length k =
card(u)[s] to the root e of Ts−1, set h(ξ) = u, and also enumerate ξ into U .

Verification (the general case). It is again clear that the nodes which will end up having 
infinite rank are exactly the nodes of F , therefore T ′ has the correct isomorphism type. 
Also, T is clearly a computably enumerable subtree of ω<ω; it can be easily transformed 
into a computable tree. We must argue that T/T ′ ∼ H.

By induction on a stage and on the index of a simple chain ξ we can show that h(ξ) is 
stable. Indeed, h(ξ) has to be changed only if a chain of a smaller index has to be grown. 
Since all classes in H are finite and by the inductive hypothesis, there are only finitely 
many stages at which h(ξ) has to be changed. Suppose h(ξ) settled on some class u in H. 
Go to the stage at which the size of u reaches its final value k. After this stage we have 
lth(ξ) ≤ card(u) = k, and it may be smaller due to its position in T and because of the 
stripping issues which we explained in detail in the elementary case. However, it cannot 
outgrow k and, thus, it eventually settles.
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Phase 3 was responsible for making sure that no class of H is left without an auxil-
iary chain associated to it. Note that chains attached to the root e cannot be re-targeted 
again. We are guaranteed that e will have arbitrarily long finite chains attached to it, 
and therefore there is no need to worry about any stripping issues. We explicitly made 
sure that every class which could potentially be without h-preimage will eventually be 
permanently associated with an auxiliary chain attached to e. Combined with the induc-
tive argument above, this implies that every class in H will eventually be permanently 
associated with an auxiliary chain in T , and this correspondence is 1-1.

The rest of the verification is very much similar to the elementary case when the sizes 
of H form computable set. We must verify that the following conditions hold:

(P1) If a node σ ∈ Ts is in F , then all finite auxiliary chains which are attached to σ in 
Ts, except for at most one (call it exceptional for σ at s), have their lengths equal 
to sizes of classes that occur in Hs.

(P2) If ξ is an exceptional auxiliary chain for σ in (P2) at stage s, and x ∈ F , then there 
is a stage t > s after which ξ is extended to a chain of length that is mentioned 
in H; after this stage this auxiliary chain will never be exceptional for σ (or any 
other τ) ever again.

Condition (P1) is explicitly maintained at every stage. For a given σ, there is at most one 
exceptional ξ whose length is lagging behind the size of h(ξ) according to the instructions 
in Phase 1. To see why (P2) holds, go to the stage at which the length of ξ reaches its 
final value. Since σ ∈ F , there is a longer chain which will eventually be attached to the 
same σ. Thus, according to the instructions at substage (3) of Phase 1, the length of ξ
must be set equal to the size of h(ξ).

It remains to consider what happens with nodes which are forever abandoned because 
they never fire again. Let σ be such a node, and assume its predecessor is in F . Then 
there are at most finitely many auxiliary chains attached to it or its successors. Go to 
the stage at which all of these chains reach their final value. The instructions of Phase 1 
guarantee that after full stripping this segment of the tree becomes a collection of disjoint 
simple chains having lengths equal to sizes of the respective classes in H. Also, recall 
that Phase 3 guarantees that no classes are left without h-preimage. Combined with 
(P1) and (P2), this shows that T/T ′ ∼ H. This finishes the proof of Proposition 2.6.

3.4. Properties of the construction

The following properties of the construction from the proof of Proposition 2.6 will be 
quite important later:

Property 3.4. Whenever a simple auxiliary chain obtains a new image in H, the chain 
grows in size.
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Property 3.5. A chain C is re-targeted only if some earlier introduced chain has grown.

Property 3.6. We re-introduce (the size of a) class in H that has been abandoned due to 
re-targeting, as follows. We attach a new simple auxiliary chain of the correct length to 
the root and associate it with the class. The new simple chain will never be re-targeted 
again.

Note also that the proof above does not assume or use that F corresponds to a reduced 
abelian group. This implies:

Theorem 3.7. Suppose A is an abelian p-group of Ulm type > 1 which is not necessarily 
a reduced group. Then the following are equivalent:

(1) A has a computable copy;
(2) A′ has a ∆0

3-copy and A/A′ has a computable copy.

Proof. (2) → (1). Recall A has Ulm type > 1, and therefore A/A′ is infinite and 
furthermore the sizes of cyclic summands in A/A′ are unbounded, for otherwise ev-
ery element of infinite height in A would have to be divisible. We can therefore run 
the proof of Proposition 2.6 which does not require the p-basic tree for A′ to be well-
founded.

(1) → (2). This is the same as in the case when A is reduced [2]; the key ob-
servation here is that the proof of this implication does not need the group to be 
reduced provided that A′ is not divisible. Since this proof has never been published 
and the proof in [16] uses a different notation, we give our version of this proof be-
low.

Since the Ulm type of A is at least 2, there must be an element a ∈ A′, 
a (= 0, which is not divisible; equivalently, any p-basic tree of A′ must have a 
non-trivial terminal node, for otherwise A′ would be divisible and A′ = A′′, con-
tradicting the assumption. This means that a has infinite p-height in A, but there 
is no x with the property px = a which also has infinite p-height. Using a, de-
fine a limitwise monotonic function f , as follows. List all x1, x2, . . . with the prop-
erty pxi = a and define f(i) = hp(xi) + 1, where hp(xi) stands for the p-height of 
xi.

We claim that the range of f is infinite and is contained in the collection of all n
such that A/A′ has a cyclic summand of order pn. We verify this claim in the paragraph 
below.

It is clear that the range of f is infinite, for the p-height of a is infinite but it 
is not divisible. Since the heights of the xi are unbounded, for each i there will be 
a j with hp(xj) > hp(xi); this will imply hp(xi − xj) = hp(xi), because hp(xi) =
hp(xj + (xi − xj)) ≥ inf{hp(xj), hp(xi − xj)} and hp(xi − xj) ≥ inf{hp(xi), hp(xj)} =
hp(xi). Note that p(xi − xj) = 0, and for some α we have php(xi−xj)α = (xi − xj). 
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But this makes 〈α〉 a pure cyclic subgroup of A of order hp(xi − xj) = hp(xi)
(that is, for each x in the subgroup its p-height in A is witnessed within the 
subgroup), and pure cyclic subgroups detach [12], so A ∼= B ⊕ 〈α〉. Since (C ⊕
D)′ = (C ′ ⊕ D′) and 〈α〉′ = 〈α〉, we have A/A′ ∼= B′ ⊕ 〈α〉, thus proving the 
claim.

Note that, essentially, we have just showed that if A has a cyclic summand of order 
pn then A/A′ also has a cyclic summand of order pn. In fact, the converse implica-
tion is also true. To see why, suppose 〈α〉 of order pn detaches in A/A′. The coset 
of α must contain an element a such that pna has infinite height, but pma has fi-
nite height for each m < n. Also, if the p-height of a in A was not zero then, for 
some b ∈ A, we would have pb = a which would also hold modulo A′. So for some 
β we would have pβ = α, contradicting the choice of α. The same argument shows 
that the p-height of each pma ∈ 〈a〉, m < n, is equal to the p-height of its coset in 
A/A′ and is equal to m. Since the p-height of x = pna is infinite, there exists some 
c with the property pnc = x and with hp(c) > 0. Consider the element y = a − c

and the cyclic subgroup 〈y〉 of A. Then hp(y) = 0, for otherwise hp(a) = hp(y + c) ≥
inf{hp(y), hp(c)} > 1 would contradict hp(a) = 0. Similarly, for m < n, hp(pmy) = m; 
otherwise hp(pma) = hp(pmy + pmc) ≥ inf{hp(pmy), hp(pmc)} > m would contradict 
hA
p (pma) = hA/A′

p (pmα) = m. This shows that 〈a〉 is pure in A and thus detaches as a 
direct summand of A.

So cyclic direct summands are the same in A and A/A′. This makes the set

#A = {〈m,n〉 : A/A′ has at least m cyclic summands of order pn}

a Σ0
2-set. Indeed, it is sufficient to search for Zp-independent α1, . . . , αm of order p such 

that, for each i ≤ m, hp(α) = n; the latter requires 0′. With the help of #A and the 
limitwise monotonic f defined above, we can use the standard techniques (e.g., [19]) 
to produce a computable presentation of the equivalence structure EA/A′ and, thus, of 
A/A′. !

Remark 3.8. The theorem above fails for non-reduced groups of Ulm type 1. Indeed, it 
is not difficult to build a computable non-reduced abelian group of Ulm type 1 such that 
its reduced component has no computable copy. Equivalently (Proposition 2.1), there 
exists a computable equivalence relation E such that the sub-relation F (E) consisting of 
exactly the finite classes of E does not have a computable copy. It is essentially sufficient 
to produce a Σ0

2 set which is not limitwise monotonic [14,20].

Remark 3.9. The functor witnessing the proof of (2) → (1) is uniform if we guarantee 
that A/A′ has only finite summands whose orders are not uniformly bounded.

The “injury” in the construction of Ash, Knight, and Oates is at most finite. Our next 
task is to understand what happens when H in TH(F ) is not necessarily reduced; that 
is, when EH contains infinite classes.
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4. The modified Ash-Knight-Oates strategy

Suppose H is an equivalence structure. We identify H and the respective GH which is 
a direct sum of cyclic or quasi-cyclic p-groups. Recall that H is proper if it has only finite 
classes, but the sizes of the classes are not uniformly bounded. We will use a modification 
of the original Ash-Knight-Oates functor TH(F ) which handles the case when H is not 
necessarily proper, but only if almost all classes of an improper H are infinite. In [9] such 
equivalence structures were given the following disparaging name.

Definition 4.1. Call a computable equivalence structure an infinite junk if it has infinitely 
many classes almost all of which are infinite.

We abuse notation and write TH(F ) for the modified Ash-Knight-Oates jump inversion 
which is described in the lemma below.

Lemma 4.2. There is a uniform procedure which, on input a computable copy of an equiv-
alence structure H and a p-basic tree F represented as a Π0

2-subtree of ω<ω with e ∈ F , 
outputs a computable p-basic tree TH(F ) with the properties:

(1) If H is proper then (TH(F ))′ = F and TH(F )/(TH(F ))′ ∼= H.
(2) If H is an infinite junk, then TH(F ) ∼= H.
(3) If H is finite then TH(F ) is finite, and furthermore its cardinality can be assumed 

arbitrarily large and with all possible uniformity.

Note that there are no assumptions on F apart from e ∈ F , which is equivalent to 
saying that 0 is in the subgroup generated by the p-basic tree F , and therefore this 
assumption is satisfied without any loss of generality.

Proof. We adopt the following modification to the original strategy of Ash, Knight, and 
Oates:

Modification 1. At every stage at which the Ash-Knight-Oates module initiates a new 
search through H or makes a change to its p-basic tree, adjoin a very long simple chain 
never seen so far to the root of the p-basic tree. Call this extra simple chain subsidiary. 
If the subsidiary chain has just been introduced, then it does not have to copy any class in 
H. We also initiate a search for a new and large enough class in H that can be matched 
with the subsidiary chain in the future. The module will not act again until the search 
is finished (if ever). When the module acts again (if ever) the chain is handled as a 
standard auxiliary chain attached to e.

The module will be later associated with a node on the tree of strategies, and in par-
ticular it may be initialised. We also attach a very long subsidiary chain to the root of 
the p-basic tree previously handled by the strategy if the strategy τ gets initialised. Since 
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the old p-basic tree will be forever abandoned by the strategy, in this case there is no need 
to search for an image for the subsidiary chain in H (the image can be larger than the 
length of the chain).

(1) Since H is proper, we will eventually succeed in finding a long enough class in 
H that can be matched to the subsidiary chain; the class in H may be (currently) 
larger than the chain. Once this is done, the chain becomes indistinguishable from the 
other many simple chains that we attach to the root 0 according to the non-modified 
instructions. There are no further interferences of the modification with the rest of the 
module. It follows that in the case when H is proper, the verification of the new module 
is almost literally the same as the verification contained in the previous section.

(2) Here the modification plays no significant role either. However, the analysis of this 
scenario is new because the case of a non-reduced H has never been considered in the 
literature. Recall that the first few classes of H could be finite, but the rest of the classes 
are infinite, and there are infinitely many of them.

First, we claim that almost all auxiliary or subsidiary simple chains that we ever 
attach become infinite. Note that a simple chain may never find a stable pre-image 
among classes in H. However, at each intermediate step we always succeed in finding a 
long enough class in H to match with the chain. Whenever we switch, the chain itself 
must grow; see Property 3.4. Thus, we still grow the length of the chain to infinity, even 
though it may never find a stable image in H. Now consider those simple chains which 
do find a stable match in H. Almost all of these chains grow infinite by simply copying 
the respective stable class in H. The analysis also applies to the subsidiary simple chains 
from the modification. In particular, since we are never stuck at any intermediate step, 
there are infinitely many such infinite simple chains to be attached to the root. It follows 
that the divisible part of TH(F ) has infinite rank.

There are at most finitely many exceptional chains that correspond to the finite classes 
in H. There may also be several finite configurations that become simple chains after 
stripping the tree. The latter corresponds to parts of the tree being forever abandoned 
in a Σ0

2-outcome of the Π0
2-approximation. Every individual simple chain, as well as each 

chain involved into an “abandoned” configuration, must grow whenever its image in H
switches (Property 3.4). Thus, a chain or a configuration of chains can be finite only if 
each auxiliary chain involved into the configuration finds a stable image in H. There are 
only finitely many finite classes in H, and thus the reduced part of TH(F ) must be finite. 
Furthermore, we may be forced to switch the image of a given chain only due to some 
currently shorter class of a smaller index has grown (Property 3.5).

If a finite class in H is skipped in the construction due to re-targeting, then it will be 
re-introduced again in the form of a simple chain attached to the root (Property 3.6). 
There are only finitely many classes having a smaller index than the index of the finite 
class. Therefore, by induction, each finite class will eventually find a stable image in the 
tree, which will be a simple chain of the correct length. It follows that the reduced part 
of TH(F ) is isomorphic to the reduced part of H (viewed as a p-group).
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(3) This is obvious from the description of the modification, because the subsidiary 
chain can be taken to be arbitrarily long. It is crucial that the chain does not have to 
copy any class in H at the stage when it is first introduced. !

5. A plan of the proof

Recall that we have to produce an effective uniform 1-1 enumeration of all computable 
isomorphism types of abelian p-groups of Ulm type ≤ n; we call such enumerations 
Friedberg.

If n = 1 then there exists Friedberg enumeration of all computable equivalence struc-
tures [9]. The uniformity of the correspondence E ↔ GE gives a Friedberg enumeration 
of all abelian p-groups of Ulm type ≤ 1. It is clear that the groups in the list are uniformly 
represented by computable p-basic trees which are inherited from the full decomposition 
induced by the corresponding equivalence structure.

Therefore, assume n > 1 throughout the rest of this paper. Inductively, fix a Friedberg 
enumeration (Fi)i∈ω of all isomorphism types of 0′′-computable abelian p-groups of Ulm 
type ≤ n − 1; furthermore, assume that they are represented by Π0

2 p-basic trees whose 
indices h(1), h(2), h(3), . . . are given uniformly.

Remark 5.1. The function h is computable and not merely 0′′-computable. It returns the 
index of the computable Ri such that σ ∈ Fi ⇐⇒ ∃∞zRi(σ, z). As we noted before, it is 
well-known that there is a uniform procedure that transforms a ∆0

3-tree into a Π0
2-subtree 

of ω<ω.

Theorem 1.2 of [9] says that there is a Friedberg enumeration (Ei)i∈ω of all infinite 
equivalence structures, and thus of infinite abelian p-groups of Ulm type 1. This is not
an immediate corollary of the existence of a Friedberg enumeration of all equivalence 
structures. Although using infinite equivalence structures is not essential for our proof, 
it will be convenient.

Based on the Friedberg enumerations (Fi)i∈ω and (Ej)j∈ω described above, fix the 
effective listing (Fi, Ej)i,j∈ω.

5.1. Proof idea

All informal explanations contained in this section will be clarified in the later sections. 
The main goal of this subsection is to informally explain some key ideas behind the formal 
construction.

In the notation above, suppose Fi is well-founded and Ej has only finite but arbi-
trarily large classes; we call such Fi and Ej true and proper, respectively. Under these 
assumptions we can uniformly produce a computable abelian p-group TEj (Fi) of Ulm 
type at most n such that (TEj (Fi))′ ∼= Fi and TEj (Fi)/(TEj (Fi))′ ∼= Ej ; this is Theo-
rem 3.7 and Remark 3.9. Since (Fi)i∈ω and (Ej)j∈ω are Friedberg, the Ulm classification 
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theorem implies that unequal pairs correspond to non-isomorphic groups provided that 
these pairs consist of true and proper members, respectively. Furthermore, the Ulm clas-
sification theorem and Theorem 3.7 imply that each computable group of Ulm type k, 
1 < k ≤ n, has the form TE(F ) for some true F of type < n and proper E having the 
correct complexities (Π0

2 and computable, respectively).
To succeed in producing the desired Friedberg enumeration, we merge two 0′′′ con-

structions – one from [9] for Ulm type 1 groups and the other for higher Ulm types 
≤ n – and let them share the “junk”. The rough idea is as follows. Given (Fi, Ej), guess 
trueness and properness, and simultaneously attempt to enumerate TEj(Fi). If all Fi

and Ej in the list were true and proper, respectively, then TEj (Fi), i, j ∈ ω, would be 
a Friedberg enumeration of all computable abelian p-groups of Ulm type 1 < k ≤ n. 
Merging it with the Friedberg enumeration of all computable abelian p-groups of Ulm 
type 1 from [9] we would get the desired 1-1 list of all groups of types ≤ n.

However, if Fi is not true or Ej is not proper, we cannot guarantee that TEj (Fi) will 
have Ulm type > 1. This will conflict with the enumeration of all groups of type 1. 
Nonetheless, by carefully controlling the group produced in each of these two unpleas-
ant outcomes it is possible to incorporate this group of Ulm type 1 into the dynamic 
procedure of enumerating of all type 1 groups from [9]. We will of course explain the 
construction from [9] in sufficient detail, but delay this until §6, discussing the ideas 
first.

5.2. The global architecture of the proof

We give a more detailed scheme of the construction which will hopefully help the 
reader to understand the complex architecture of the proof. The construction will consist 
of three main modules.

(1) The main module. On input Fi and Ej , it performs the following tasks:
• It measures whether Fi is true and Ej is proper. The combined complexity of these 

two guessing procedures is Σ0
4 (to be verified), and it will be split into infinitely 

many Π0
3-instances, one for each potential ∃-witness z in Σ0

4 = (∃z)Π0
3(z).

• It attempts to build TEj (Fi). If Fi is true and Ei is proper then, for exactly one 
z, exactly one submodule σ associated with (i, j, z) succeeds in building TEj (Fi)
of Ulm type > 1. This occurs only if the Π0

3-predicate holds, and E is “true”. The 
submodule σ also has several outcomes which depend on the isomorphism type 
of E and also on how exactly the Π0

3-predicate fails. Under these outcomes either 
finite groups/structures or infinite junk structures (Definition 4.1) of Ulm type 1 
are produced. They are placed into the junk collector; see the third main module 
below.

• To make the structures produced below the Π0
2- and Σ0

2-outcomes easier to han-
dle via Lemma 4.2, the procedure associated with σ uniformly replaces Ej with 
a certain Hj and works with THj (Fi) instead of TEj (Fi). The equivalence struc-
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ture Hj has several convenient combinatorial properties (to be explained), and 
of course Hj

∼= Ej if the latter is proper, thus THj (Fi) ∼= TEj (Fi) in the Π0
3

outcome.
(2) The module enumerating Ulm type 1 groups. This is literally the same as the one in 

[9], but with equivalence structures uniformly replaced by the respective Ulm type 1 
abelian p-groups. Various sub-strategies are put together into a tree of strategies, in 
which the true path will be 0′′′-computable. The tree produces an enumeration of all 
equivalence structures which mentions all structures having arbitrarily large finite 
classes exactly once; it also enumerates some isomorphism types of infinite junk and 
finite structures. The latter two are placed into the junk collector (see (3) below) 
which ensures all infinite junk and finite structures are mentioned exactly once up 
to isomorphism. The only missing isomorphism types are:
• Equivalence structures having finitely many classes and at least one of these is 

infinite.
• Equivalence structures which have infinitely many classes and are eventually 

bounded; that is, almost all classes are less in size than some fixed bound k
specific to the structure.

The uniform Friedberg list of such structures can be easily produced independently 
and later adjoined to the Friedberg enumeration of the rest.

(3) The junk collector. It is responsible for enumerating all infinite junk and finite equiv-
alence structures/groups without repetition. Its actions are global. It handles the 
infinite junk and finite equivalence structures/groups produced by the two main 
modules as described above, and it also introduces its own ones to make sure that 
the enumeration is 1-1 and surjective on isomorphism types of infinite junk and 
finite equivalence structures/groups. The junk collector module has two submod-
ules:
• The infinite junk collector. It is responsible for making sure that all computable 

isomorphism types of infinite junk structures/groups are listed, and without rep-
etition. Its unsuccessful attempts result in abandoning a structure in the process; 
abandoned structures are permanently placed into the finite junk collector.

• The finite junk collector. Its task is to ensure all finite equivalence struc-
tures/abelian p-groups are mentioned in the list, and exactly once. Several simple 
tricks and the movable markers technique are sufficient to sort out the combina-
torics. (One such trick is described in Modification 1 in Lemma 4.2.)

The construction will be described in Section 10, but we outline it below. The con-
struction will be split into three relatively independent phases;

(1) Phase 1 is responsible for enumerating all Ulm type k > 1 (k ≤ n) groups, all 
groups of Ulm type 1 having arbitrarily large finite cyclic summands, and some
finite and infinite junk groups. At this phase of the construction the main module
and the module enumerating Ulm type 1 groups act simultaneously and independently 
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according to their instructions. We ensure that there is no interaction between these 
two modules.

(2) Phase 2 is responsible for expanding the output of Phase 1 so that the new enumer-
ation also contains all isomorphism types of infinite junk structures. This is done 
using the infinite junk collector.

(3) Phase 3 transforms the output of Phase 2 into an enumeration which additionally 
mentions every isomorphism type of a finite abelian p-group exactly once. This is 
done using the finite junk collector.

Finally, to get the desired Friedberg enumeration we merge the output of Phase 3 
with the Friedberg enumeration of all eventually bounded equivalence structures and all 
equivalence structures having finitely many classes at least one of which is infinite; the 
latter of course are uniformly replaced with the respective abelian p-groups. This finishes 
the informal outline of the construction.

One crucial observation is that, from the perspective of the junk collector, the products 
of Π0

2 and Σ0
2 outcomes of submodules of the main module (1) are not really special 

when compared with similar outcomes of the module (2) taken from [9]. Thus, the junk 
collector and the tree-construction from [9] can be adopted with no modification, but 
all equivalence structures should be uniformly replaced with the respective Ulm type 1 
abelian p-groups (Proposition 2.1).

Of course, there are many details that need to be formally and carefully clarified 
and verified. Nonetheless, provided that each of the three main modules succeeds in its 
proposed task we shall end up with a Friedberg enumeration of all computable abelian 
p-groups of Ulm type ≤ n.

Section 6 contains a detailed exposition of the basic strategy for main module. It relies 
on the modified Ash-Knight-Oates strategy and on properties of a certain transformation 
E → H which is verified in Section 7. The second and third main modules can be taken 
from [9]; no further modification to these modules is necessary in our proof. Thus, our 
exposition of these two modules (Sections 8 and 9, respectively) is relatively compressed. 
The formal construction and its verification is contained in Section 10.

6. The basic strategy

6.1. True and proper groups

Recall that the Ulm type of each Fi is at most n −1, and that each Fj is a Π0
2 subtree 

of ω<ω whose index is given uniformly. Each Ej is a computable infinite equivalence 
structure which can be viewed as an abelian p-group of Ulm type 1 in which a complete 
decomposition is known.

We identify Ei with the corresponding abelian p-group. According to our terminology, 
Ei is proper if it consists only of finite classes and the sizes of its classes are unbounded.
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Definition 6.1. Let F be a p-basic tree. If F has a non-zero terminal node then we 
say that F is true. Note that this is equivalent to saying that the reduced part of the 
corresponding p-group is non-trivial.

Lemma 6.2. Let (Ei)i∈ω and (Fi)i∈ω be uniform enumerations of computable equivalence 
structures and Π0

2 trees as defined above.

(1) The property “Ei is proper” has complexity Π0
3.

(2) The property “Fi is true” has complexity Σ0
4.

Proof. For (1), just state that each class is finite (Π0
3) and that there are arbitrarily large 

classes (Π0
2). The statement “Fi is true” can be described by the formula:

(∃x) [x ∈ Fi ∧ x (= e ∧ (∀y)(y ⊃ x → y /∈ Fi)]

which gives an upper bound of Σ0
4 for (2). !

It is not difficult to show that the bounds in the lemma above are optimal, and 
therefore the complexity of our guessing cannot be simplified.

6.2. Guessing trueness and properness

Given (Fi, Ej) we need to test whether Fi is true and Ej is proper. We suppress the 
subscripts in Fi and Ej and write (F, E) throughout the rest of this subsection.

We start with the simpler Π0
3 guessing properness of E. We index classes of a com-

putable equivalence structure by natural numbers according to the order at which they 
appear in the enumeration of the equivalence structure. Write [i]E or simply [i] for the 
i-th class of E. (Classes having a smaller index have a higher “priority”.)

Definition 6.3. An equivalence structure is eventually bounded if there is an n ∈ ω such 
that all classes having indices > n are bounded in size by n.

Note that an eventually bounded structure may have infinite classes or finitely many 
classes.

Lemma 6.4. For an equivalence structure E, eventual boundedness is a Σ0
2-property.

Proof. The property says:

(∃n)(∀i > n)¬



∃a1, . . . an+1 ∈ [i]
∧

i%=j,i,j≤n+1
ai (= aj



 .
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(Recall that the i-th class [i] is not necessarily the class containing the i-th element of E; 
see the explanation preceding Definition 6.3.) !

6.2.1. Guessing properness of E
The preliminary description of the outcomes of this guessing is:

Π0
2(j): E is not eventually bounded and the jth class in E is infinite.
Π0

3: E is proper.
Σ0

2: E is eventually bounded.

Since an equivalence structure is proper if and only if it is not eventually bounded and 
does not contain infinite classes, it is clear that the outcomes are exclusive and cover all 
possible cases.

6.2.2. Guessing trueness of F . Slicing Σ0
4 into (Π0

3(z))z∈ω

Recall that the sentence saying that F is true has complexity Σ0
4. We represent the 

respective Σ0
4-predicate as ∃zΠ0

3(z). As usual, we assume that the measured predicates 
satisfy the property of the uniqueness of existential witnesses. In particular, if ∃zΠ0

3(z)
holds then there will be exactly one such z.

The outcomes of each Π0
3(z)-guessing are:

Π0
2(j, z): This is a Π0

2 outcome that says that j witnesses the failure of the Π0
3(z) predicate 

∀jΣ0
2(j, z).

Π0
3(z): F is true with a Σ0

4-witness z.

The collection of all Π0
2(j, z)-outcomes can be viewed as the Σ0

3(z)-complement 
of Π0

3(z).

6.3. The strategy for (F, E, z)

Each triple (F, E, z) is associated with a strategy, in which z is interpreted as a 
potential existential witness for ∃zΠ0

3(z) approximating trueness of F . The strategy for 
one (F, E, z) in isolation relies on the guessing F and E described above, and it also has 
the following two major tasks.

6.3.1. The first task: building H
The strategy dynamically transforms the computable equivalence structure E into a 

computable equivalence structure H with the properties:

i. If E is not eventually bounded, and one of the two conditions holds:
(i.1) E has infinite classes, or
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(i.2) F looks not true according to Σ0
3(z) (see the previous subsection), then H

has infinitely many classes with almost every class infinite. Furthermore, the 
number of finite classes in H produced by the strategy associated is specific 
to the node the strategy and to the outcome of the strategy under which it is 
produced.

ii. If E is proper and F is true then H ∼= E.
iii. If E is eventually bounded then H is finite.

Condition i. says that H is an infinite junk structure (Definition 4.1). We delay the 
detailed description of H and the verification of i-iii until Section 7. Also, a further minor 
adjustment to this transformation will be introduced in Subsection 8.5 after the tree of 
strategies T from [9] is described in sufficient detail. For now, we take these properties 
for granted.

6.3.2. The second task: building TH(F )
The second task of the strategy is producing TH(F ) based on the dynamic definition 

of H; here TH(F ) stands for the modified version of the Ash-Knight-Oates operator 
defined in Section 4. As usual, we identify an equivalence structure with the direct sum 
of cyclic and quasi-cyclic p-groups in which cyclic summands Zpn naturally correspond 
to equivalence classes of size n. According to Lemma 4.2 and assuming the properties 
i.-iii. of H stated in the subsection above, we have the following different scenarios:

a. If H is infinite junk, then TH(F ) ∼= H.
b. If H is proper, then (TH(F ))′ = F and TH(F )/(TH(F ))′ ∼= H.
c. If H is finite then so is TH(F ).

Furthermore, by Lemma 4.2, the cardinality of the finite TH(F ) in c. can be assumed as 
large as necessary.

6.4. Actions of the strategy for (F, E, z)

Whenever the strategy becomes active, it makes one more step in each of the two 
uniform procedures:

(1) Approximate TH(F ), where H is the uniformly modified version of E satisfying i-iii
(see Section 7 for details) and TH(F ) is the modified Ash-Knight-Oates operator 
satisfying a-c (see Lemma 4.2) applied to F and H.

(2) Monitor H and guess whether it has infinitely many classes all of which are infinite. 
Since H is uniformly defined from E, this predicate is uniformly Π0

2 in (the index 
for) E. If this predicate fires then the basic module initialises itself by permanently 
abandoning its current TH(F ). In this case it creates a new version of TH(F ) which 
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is building from scratch. The new version will have a new index in the uniform 
enumeration of all type ≤ n abelian p-groups.

6.5. The outcomes

Assuming that H indeed satisfies the claimed properties i-iii, the strategy associated 
with (E, F, z) will have one of the following outcomes:

pi0 This is a Π0
2 outcome which measures if all classes in H are infinite (and thus 

there infinitely many such classes).

Every time it is played the strategy is initialised, and its previous version of 
TH(F ) is abandoned. Recall that the size of the abandoned TH(F ) can be 
picked as large as necessary, according to Modification 1 from Section 4.

pij , j > 0: This is a Π0
2 outcome which says that:

– E is not eventually bounded, i.e., it has arbitrarily large classes of arbi-
trarily large indices, and

– either the jth class in E is infinite, or F looks not true as witnessed by 
Π0

2(j, z).
By Lemma 4.2 and assuming properties i-iii of H, in this case the strategy 
produces a computable TH(F ) ∼= H which can be identified with GH com-
posed of at most finitely many cyclic and infinitely many quasi-cyclic direct 
summands. Furthermore, we will ensure that different strategies always pro-
duce non-isomorphic TH(F ) ∼= H under their Π0

2-outcomes, and also different 
Π0

2-outcomes of the same strategy give non-isomorphic TH(F ) ∼= H. This will 
be clarified in Section 7. With extra care we will make sure that these infinite 
junk structures/groups also differ from any infinite junk structure produced 
by the tree of strategies T from [9]; see Section 8 for the description of T and 
Subsection 6.5 for the above-mentioned adjustment.

Π: This is a Π0
3 outcome that says that E is proper and F is true.

In this case, by Lemma 4.2 and assuming properties i-iii of E → H, the strat-
egy outputs a computable basic tree TH(F ) with the properties (TH(F ))′ = F

and TH(F )/(TH(F ))′ ∼= H ∼= E (the latter two are identified with the respec-
tive groups). Furthermore, since E ∼= H is proper and F is true of type < n, 
the Ulm type of TH(F ) is at least 2 and at most n.

fin: This is a Σ0
2-outcome which says that E is eventually bounded.

In this case TH(F ) is finite. Furthermore, its cardinality can be controlled 
and made arbitrarily large, if necessary, according to Modification 1.

To finalise the description of the basic strategy we must give a detailed description of 
the transformation E → H and verify its claimed properties.
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7. The description of E → H

First, in Subsection 7.1 we describe a transformation E → Ĥ which takes care of most 
properties i-iii with the exception of the “furthermore” part of iii. Then in Subsection 7.2
we further adjust Ĥ and describe a transformation Ĥ → H which is based on a strategy 
from [9] and which also gives property iii in full. This modification is highly convenient 
in the general case of many strategies working together. Compared to the rest of the 
paper the content of this section is rather elementary.

7.1. The definition of Ĥ

Given an infinite computable equivalence structure E, the strategy produces a com-
putable equivalence structure Ĥ with the properties:

i. If E is not eventually bounded (Definition 6.3), and one of the two conditions holds
(i.1) E has infinite classes, or
(i.2) F looks not true according to Π0

2(j, z) (see 6.2.2),
then Ĥ has infinitely many classes with almost every class infinite.

ii. If E is proper and F is true then Ĥ ∼= E.
iii. If E is eventually bounded then Ĥ is finite.

We write [m]L for a class of an equivalence structure L with index m. Say that a stage 
s is expansionary if the parameter max{card[i]Es , i ≤ s} has increased from the previous 
expansionary stage s′. The parameter measures whether the structure E has arbitrarily 
large classes with arbitrarily large indices. The simple construction below acts only at 
expansionary stages.

7.1.1. Construction
At every stage, each class in Ĥs is matched with a class in Es. Suppose at a stage 

[n]Ĥ is copying [i]E . If [i]E has grown in E or the ith Π0
2 instance of the Σ0

3 predicate 
“F is not true (z)” has fired, then perform the following action. Initialise each class [k]
in Ĥ that satisfies

(1) k > n, and
(2) [k]Ĥ has been copying a class [j]E with j ≥ i.

Each initialised class grows by one extra element and will be assigned to some large 
enough new class in E (if it exists). Until such large enough classes are found the whole 
strategy (not just this simple procedure describing Ĥ) ceases its action. Then, once large 
enough classes are found, each currently abandoned classes of E is assigned to a new 
class in Ĥ. This ends the construction.
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7.1.2. The verification of i, ii and iii
To see why iii holds, recall that the procedure constructing Ĥ acts only at expan-

sionary stages. Since there are only finitely many such, Ĥ remains finite. To check i and 
ii, note that each initialised class must grow. A class can be initialised only due to some 
larger index class growing or due to some higher priority Π0

2 instance of the predicate “F 
is not true (z)” firing; furthermore, in the former case this larger Ĥ-index class must be 
copying a larger E-index class. There are only finitely many such. Thus, if all classes in E
are finite and F looks not true according to instance z, then each class can be initialised 
only finitely often. Also, a class in E has to change its clone in Ĥ only if a class with a 
smaller E-index grows. Therefore, ii follows by induction. To check i, assume that [j] is 
the left-most class of E – i.e., the one with the smallest index – that grows to infinity. 
Since all classes to the left of it are finite, there is a stage after which the class is stably 
assigned to a clone in Ĥ, call this clone [k]. There exist at most finitely many classes of 
Ĥ to the right of [k] that are controlled by classes in E having index less than the index 
of [j]. All the rest are initialised infinitely often. Since E has arbitrary large classes with 
arbitrary big indices, every search for a new appropriate image for an initialised class is 
successful. In particular, E has infinitely many classes, and therefore so does Ĥ. Since 
each initialised class must grow, co-finitely many classes of Ĥ are infinite.

7.2. The transformation from Ĥ to H

Fix a uniformly computable collection of non-intersecting intervals I0, I1, . . . , In . . . in 
ω which form its full partition, where the smallest number of In is equal to the largest 
number of In−1 plus 1. We write max In for the largest number of In. (In the construction 
we will also make sure that max Iσi (= max Iτk for σ (= τ and any strictly positive i, k ∈ ω.)

We are given Ĥ which is either proper, or is an infinite junk, or is finite (cf. i-iii). 
Recall that, according to our convention, every class of Ĥ receives an index according 
to the stage at which it appears in the enumeration of Ĥ. The uniform definition of 
Ĥ contained in the subsection above has the following property. If the size of [i] in Ĥ
is infinite and has infinitely many classes, then so is [k] for each class [k] having its 
index larger than the index for [i]. We must uniformly build a computable equivalence 
structure H and a map ψ : H → Ĥ by stages.

The idea is rather simple. We construct H so that it copies Ĥ, but the isomorphism 
ψ : C → Ĥ is defined not class-by-class but block-by-block. If some class in the k-th block 
of Ĥ has grown, then in H initialise all ψ-preimages of j-blocks for j ≥ k. Whenever we 
initialise a block in H each class in the block is increased in size.

We give formal details. At stage s, if class of Ĥ having index j ∈ Ik has grown in size, 
then:

(1) Declare ψ undefined for every class of Ĥs having its index in Im for some m ≥ k.
(2) Grow all classes of Hs which currently have no φ-image to a size greater than any 

number mentioned so far.
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(3) Speed up the enumeration of Ĥ and search for new, larger images for the finitely 
many classes in Hs for which ψ is currently undefined.

(4) If (2) is ever finished, introduce new classes in Hs and match them with those classes 
of Ĥ which currently have no ψ-preimages. Goto (1).

Lemma 7.1.

(1) If Ĥ is proper then H ∼= Ĥ.
(2) If Ĥ is finite then H is finite too.
(3) If Ĥ is an infinite junk then so is H. Furthermore, either H has all classes infinite 

or the total number of finite classes in H is equal to max Ik for some k.

Proof. (1) By induction on the index i of a class [k]Ĥ and the index m of the block Im
such that i ∈ Im, every class [k] in Ĥ eventually finds a stable ψ-preimage in H. Thus, 
in this case ψ is a ∆0

2-isomorphism of equivalence structures witnessing H ∼= Ĥ.
(2) This is obvious.
(3) Let m be the smallest such that there is an infinite class in Ĥ having index 

j ∈ Im. Then the only classes which have stable ψ-preimages in H are the classes whose 
indices are in In for some n < m. If a class in H does not have a stable ψ-image then 
its size is driven to infinity; indeed, since Ĥ is an infinite junk the search at (3) of the 
procedure describing H is always successful, and according to (2) whenever ψ is redefined 
the class must be grown. If m = 0 then all classes in H end up infinite, otherwise let 
k = m − 1. !

The lemma above and the properties of E → Ĥ imply that the uniform transformation 
E → Ĥ → H satisfies i-iii from 6.3.1, as desired. One further insignificant restriction to 
the choice of intervals Im will be explained in Subsection 6.5.

8. The tree of strategies for Ulm type 1 groups

The construction in [9] consists of the tree of strategies, the junk collector, and also an 
external and independent module enumerating all equivalence structures having finitely 
many classes at least one of which is infinite and equivalence structures which have 
infinitely many classes and are eventually bounded. In this section we describe the tree 
of strategies from [9] with the detail sufficient for our purposes; the junk collectors will 
be discussed in the next section.

The tree of strategies from [9] is used without any significant modification, i.e., it can 
be essentially literally copied from [9]. The tree and various strategies associated with 
its nodes act independently from the rest of the construction, and the only interaction 
with the rest of the construction is via the junk collector. And even then this interaction 
is literally the same as in the proof of [9]. All we need to do is:
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(1) interpret equivalence structures as the respective Ulm type 1 groups, and
(2) for every strategy associated with some σ along the tree, the infinite junk structures 

potentially produced by σ are non-isomorphic to any infinite junk structure produced 
by a strategy for (Fi, Ej , z) or by any other τ (= σ.

The first assertion is just a triviality, and the second is not really a modification either, 
for the original construction in [9] already ensured that different nodes and different 
outcomes produce non-isomorphic infinite junk structures, and the precomputed bounds 
on the number of exceptional classes can be kept exactly the same as in [9]. We will 
elaborate on this point at the very end of this section, where specifics will be spelled out.

No further adjustment is necessary. Thus, if the reader is familiar with [9] they 
can skip the rest of the section which is devoted to a compressed description of the 
tree of strategies from [9], the strategies associated with its nodes, and of the types of 
equivalence structures produced under different outcomes. We start with an idea. (We 
adjust the notation from [9] to avoid conflicts with the notation in the present arti-
cle.)

8.1. Idea

Let Xi be the i-th equivalence structure in their natural uniform enumeration with 
repetition, in which the k-th class of the i-th structure is represented by the k-th col-
umn of the computably enumerable set Wi. To produce a Friedberg enumeration of all 
isomorphism types of computable equivalence structures, we could (naively) start off by 
declaring X0 be the first in the list. To decide whether X1 must be put into the list, we 
must see if X0 ∼= X1. The relation Xi

∼= Xj is Π0
4-complete, but X1 must be placed into 

the Friedberg list only when X0 ! X1 which is Σ0
4.

We spread this Σ0
4-guessing over infinitely many Π0

3-nodes in the tree of strategies, with 
each node working with its own existential witness z for a given Xi which approximates 
whether Xi

∼= Xj for some j < i. Each node working with (i, z) dynamically replaces 
its structure Xi = X with a structure U using a uniform transformation similar to that 
from Section 7. In this transformation, if the structure has arbitrarily large finite classes 
(which is a Π0

3 condition) then the output structure U is isomorphic to X. Otherwise 
we end up with either a finite X whose size can be assumed as large as necessary, or an 
infinite junk having the number of exceptional finite classes taken from a computable set 
specific to the strategy.

8.2. The basic strategy

Each basic strategy is associated with a pair (i, z). It monitors the i-th equivalence 
structure Xi and approximates the Π0

3-instance of the Σ0
4-predicate measuring Ξ(Xi) ∧

(∀k < i)Xi ! Xk, where Ξ(Xi) is the Π0
3 predicate saying that Xi has arbitrarily large 
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finite classes. Let P (z, i) be the Π0
3(z) predicate such that Ξ(Xi) = ∃zP (z, i). As usual, 

without loss of generality ∃zP (z, i) implies that there exists exactly one such z.
The strategy dynamically transforms Xi into an equivalence structure U = Ui with 

the properties:

(1) If P (z, i) holds then U ∼= X.
(2) If P (z, i) fails then either U is finite or U is infinite junk with the number of excep-

tional finite classes coming from a computable set specific to the strategy.

The transformation is similar to the one described in Section 7. A rigorous description 
of this transformation and its verification are contained in Subsections 2.3.2-2.3.4 and 
Lemmas 2.1 and 2.2 of [9], but in a different notation. (In the notation of [9], the input 
structure is denoted by Eτ , the output structure is Uτ , and the partial isomorphism be-
tween the two at every stage is ,τ . The description of the transformation is incorporated 
into the description of the basic strategy.) The following outcomes are possible (see 2.3.5 
of [9]):

• The Σ0
2 outcome wait. It is played when either Xi has only finitely many classes or it 

is eventually bounded (i.e., does not have arbitrarily large classes of arbitrary large 
index). In this case we may assume that the size of some class of U is as large is 
necessary on the stage when U is defined.

• The Π0
2 outcome init. If this is the true outcome then Xi has infinitely many classes 

but too few of them are finite, namely less than k finite classes, where k is specific to 
each strategy. This is clearly a uniformly Π0

2 condition. The outcome is played if the 
Π0

2 predicate fires, and in this case the strategy initialises itself. More specifically, 
the current equivalence structure U built by the strategy is permanently abandoned 
and the strategy starts building a new equivalence structure which will have a large 
index in the global Friedberg enumeration.

• The Π0
2 outcome pij . This is the j-th instance of the Σ0

3-predicate saying that P (z, i)
fails; in other words, either Xi could be isomorphic to some Xj , j < k, or it does 
not have arbitrarily large finite classes. In this case U is an infinite junk structure. 
Whenever the outcome is played again it comes with the best current approximation 
c to the number of finite exceptional classes. This number k of exceptional finite 
classes of U is necessarily taken from a computable parameter set specific to the 
strategy and the parameter j of this outcome. Different parameter sets for different 
strategies do not overlap. If this outcome is the true outcome then there exists a 
stage s such that c[t] = c[s] for every t ≥ s and c[t] is correct.

• The Π0
3 outcome pi3. It says that P (i, z) holds, and thus Ei ! Ek for any k < i, 

and also Ei contains arbitrarily large finite classes. Under this outcome the strategy 
produces Ui

∼= Ei.
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8.3. The tree of strategies, the current true path, initialisation

The order of the outcomes is:

init < pi0 < pi1 < . . . < pi3 < wait.

The tree T is composed according to this order; of course under the pi3 outcome mea-
suring P (i, z) there is no other node working with some z′ > z in P (i, z′).

The definition of the current true path is standard for such constructions with explicit 
Π0

3-outcomes, with the pi3-outcome visited in-between pij outcomes, so that the true 
path is 0′′′-computable. No links or scouting reports or other tricks peculiar to some 0′′′
proofs are necessary. The definition of initialisation is not entirely standard; the only not 
entirely standard part being that the nodes below the pi3 outcome of σ are forced to 
play their pi2j outcomes if σ plays its pi2j outcome.

We note that in [9] there was an unnecessarily complex resolution of the possibility of 
several Π0

2-outcomes of the same τ played infinitely often; this difficulty can be resolved 
entirely and elementarily by using the uniqueness of ∃-witnesses throughout. We must 
of course dynamically adjust the definitions of all outcomes of τ (including those played 
if τ is off the current true path) depending on the position of τ on the tree. In [9], we 
defined a dynamic explicit version of the above-mentioned transformation, but of course 
it did not have to be explicit.

8.4. Structures produced by T

We will not sketch the verification; see [9] for the details of the proof. We take correct-
ness of the tree-construction sketched above for granted. If we view the tree of strategies 
T as one large module, its cumulative products can be classified as follows:

• Equivalence structures having arbitrarily large finite classes. All such structures are 
enumerated under the pi3-outcomes along the true path, and without repetition (up 
to isomorphism).

• Finite structures. These come from true init- and wait-outcomes of various nodes in 
the tree, and also are produced due to initialisation. By making them larger than any 
number seen so far in the construction (see, e.g., Modification 1), we ensure there 
is no repetition among them, but we do not guarantee that all finite structures are 
produced by the tree.

• Infinite junk structures produced by true pij-outcomes of various structures. Note 
that some strategies off the true path can be forced to play their pij-outcomes. 
The number of sizes of exceptional classes is different for different nodes and below 
different outcomes of the same node. At every stage the isomorphism type of the 
structure is guessed, with the guess eventually becoming correct if the outcome is 
played infinitely often.
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More specifically, if m is the number of times the strategy (call it τ) has been ini-
tialised, then the number of finite classes in Uτ produced under the true outcome pi2j
of τ should be between 〈τ, m, j〉 and 2〈τ, m, j〉, where the standard pairing function 
〈i, j〉 is replaced with 3〈i,j〉 (see the very end of 2.3.2 of [9] for this convention); this 
is Lemma 2.1 of [9]. These parameters are highly flexible, allowing us to change the 
base of the exponent and the exact choice of enumeration of τ . But the approach in 
[9] already gives sufficiently sparsely distributed intervals, so no further adjustment 
will be necessary.

8.5. The complete separation of infinite junk structures

Now, since we have explained the role of the intervals [〈τ, m, j〉, 2〈τ, m, j〉], we are ready 
to introduce the following elementary but important adjustment to the basic strategy 
from Section 6.

Modification 2. We assume that for every strategy σ working with some (Fi, Ej , z), the 
parameters max Iσk = max Ik described in Subsection 7.2 are taken from the complement 
of the set

⋃

τ∈T
[〈τ,m, j〉, 2〈τ,m, j〉],

where T is the tree of strategies from [9]. We furthermore assume that max Iσk (= max Iσ
′

j

whenever either σ (= σ′ or k (= j.

Infinite junk structures produced by various Π0
2-outcomes of different strategies are 

non-isomorphic. Thus, there is no conflict between Π0
2-outcomes of different strategies, 

regardless of whether they live on the tree T or work with some triple (Fi, Ej , z). Any 
two distinct Π0

2-outcomes of the same strategy (on the tree or working with a triple) 
produce non-isomorphic infinite junk structures as well.

Informally, each Π0
2 outcome will “know” the isomorphism type of the structure it will 

produce. Since we assume uniqueness of existential witnesses throughout, the true Π0
2-

outcome is the only one which guesses the isomorphism type of the infinite junk structure 
correctly infinitely often. More formally, if an infinite junk structure L is produced under 
a true Π0

2-outcome of some τ ∈ T or some σ working with (Fi, Ej , z), then L comes 
together with a computable sequence (ls)s∈ω such that the unique number l mentioned 
in the sequence (ls)s∈ω infinitely often describes the sizes of the finitely many exceptional 
classes in L. (If L is not infinite junk then (ls)s∈ω has no such l.) In the case of τ ∈
T the finite parameter comes from the dynamic definition of the respective interval 
[〈τ, m, j〉, 2〈τ, m, j〉], and in the case of σ working with (Fi, Ej , z) this parameter is the 
current max Iσm, where m corresponds to the outcome.
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9. The junk collector

The junk collector can be extracted from [9] without any further modification. For 
completeness, we explain the action of the junk collector in fairly complete detail.

We call a structure a junk structure if it is either a finite structure or an infinite junk 
structure produced by one of the strategies. Junk structures can be of two different kinds:

(1) Finite junk. These are finite abelian p-groups/equivalence structures which are either 
produced due to initialisation or are built if the Σ0

2-outcome is the true outcome. 
Because of Modification 1, the cardinalities of these finite groups may be assumed to 
be large and unseen at the stage when they are first introduced; see Lemma 4.2(3).

(2) Infinite junk (see Definition 4.1). These are produced under various Π0
2-outcomes, 

which are not their left-most Π0
2-outcomes, of basic strategies either working with 

(Fi, Ej , z) or along the tree T . According to Modification 2 in the preceding Subsec-
tion 8.5, the isomorphism type of the infinite junk structure produced by σ ξ̂, where 
ξ is the Π0

2-outcome of σ played infinitely often, will be uniquely determined by σ
and ξ, regardless of the type of the strategy σ. At every stage at which the outcome 
is played we will also have the current best guess on the isomorphism type of the 
structure.

The junk collector consists of two submodules working in coordination with each 
other.

9.1. The infinite junk collector

The task of this global strategy is to ensure that each isomorphism type of infinite 
junk structure H is represented in the global enumeration, and exactly once. Here the 
isomorphism type of an infinite junk structure is identified with the isomorphism type of 
the respective abelian p-group of Ulm type 1. Note that under each Π0

2-outcome, which 
is not the left-most outcome, we have a specific guess on the isomorphism type of the 
infinite junk produced by the respective strategy. Call this isomorphism type L. If the 
outcome is played again at stage s, then we say that L is active at s. Otherwise, we say 
that it is not active at the stage. We assume that at most one structure is active at a 
given stage.

9.1.1. Idea
Initiate an enumeration of all isomorphism types of infinite junk structures. If L

becomes active at a later stage, then we are in the danger of having repetitions, for the 
following reason. Suppose an enumeration of L′ ∼= L has already been initiated by the 
infinite junk collector. When L becomes active, we stop building L′ and permanently put 
the currently finite L′ into the finite junk collector (to be explained). We also artificially 
adjoin a very large cyclic summand to L′ to make it look different from all the other finite 
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structures that we have ever seen in the construction so far. While L is no longer active, 
we re-introduce its isomorphism type to the junk collector by using a large L′′ ∼= L.

9.1.2. The formal description
We define a computable sequence (Js

i )s,i∈ω of infinite junk equivalence structures. 
The sequence (Js

i )s,i∈ω can be thought of as a computable map ν which on input (i, s)
outputs the index of some computable abelian p-group. At every stage we will of course 
have only a finite part of each of these structures in their natural uniform enumeration.

The input of the infinite junk submodule is a uniform enumeration of abelian p-groups 
some of which can be infinite junk. We write L0, L1, . . . to denote these groups. At every 
stage each Li is finite and is identified with the respective equivalence structure ELi

with all possible uniformity; see Proposition 2.1. This list is uniformly produced by sub-
strategies of the main strategy and the tree T all working together, but the exact nature 
of this list is not important. We need only the following assumptions about this list.

(a1): We identify each Li with its index which is uniformly computable from i; without 
loss of generality we may assume that the complement of the set of all these indices 
is an infinite computable set.

(a2): At every stage at most one such L = Li can be declared active which means that, 
in a Π0

2-fashion, we have more evidence that L may end up being an infinite junk 
structure. In this case the intended isomorphism type of L is also given in the form 
of a finite parameter describing the exceptional finite classes of L. At such a stage 
L grows in size to a very large cardinality. If L is active infinitely often then this 
parameter is the only one which appears as the best current guess infinitely many 
times (cf. Subsection 8.5).

(a3): Also, if Li (= Lj then their parameters from (a2) above never describe the same 
isomorphism type of an infinite junk structure (cf. Modification 2).

At stage 0, initiate a uniform enumeration (J0
i )i∈ω of all isomorphism types of abelian 

p-groups J such that the respective EJ is an infinite junk equivalence structure. Each 
isomorphism type comes with a (strong) index describing the finitely many exceptional 
classes in the respective J0

i . Unless interrupted and declared abandoned (to be defined), 
each J0

i eventually ends up isomorphic to the infinite junk structure with the declared 
finite description.

As stage s, consider the following cases:

• Some L is active at the stage. Let i be the unique index such that, according to the 
parameter describing L (see (a2)), we should have L ∼= J0

i . Set Js+1
i = L and declare 

Js
i abandoned and place it into the finite junk collector. Adjoin a very large class to 

the structure before permanently abandoning it.
• No L is active. If L was active at stage s-1 and currently Js

i = L, then introduce 
a new D having a large index (see (a1)) which, unless interrupted and declared 
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abandoned, will have the same isomorphism type as the intended isomorphism type 
J0
i at the end of the construction; define Js+1

i = D.

In any case make one more step in the approximation of each Js
i , and go to the next 

stage.
Now to the verification. We identify equivalence structures with their computable 

indices and with the respective groups. Let limsJ
s
i be equal to the structure X having 

the smallest index such that there exists infinitely many stages s at which Js
i = X.

Lemma 9.1. Suppose there exist infinitely many stages at which L becomes active, and 
let i be such that J0

i
∼= L. Then Ji = limsJ

s
i = L.

Proof. At every stage s at which L becomes active we set Js+1
i = L. Furthermore, if 

some other L′ becomes active at a stage t, then we set J t+1
j = L for some j (= i, because 

the finite parameter describing L′ corresponds to a non-isomorphic infinite junk structure 
by (a3). Also, every time L becomes active, the structure Js

i is declared abandoned and 
will never be set equal to J t

i at any later stage t. It follows that limsJ
s
i = L. !

Lemma 9.2. Suppose X is an infinite junk structure such that there is no L ∼= X in 
the input list which becomes active at infinitely many stages. Then for some i, Ji =
limsJ

s
i
∼= X.

Proof. Let i be such that the intended isomorphism type of J0
i is the same as the 

isomorphism type of X. By (a3) combined with (a2), there will be at most one L in the 
list which could potentially be isomorphic to X in the limit. Thus, there are at most 
finitely many stages s at which Js

i (= Js+1
i . Let s′ be least such that Js

i = Js+1
i for each 

s > s′. If s′ = 0 then limsJ
s
i = J0

i , the enumeration of J0
i is never interrupted, and 

thus we end up with X ∼= J0
i = limsJ

s
i by the choice of i. Otherwise, limsJ

s
i = D for 

some D picked at s′ and which, unless interrupted, has the same isomorphism type as 
the intended isomorphism type J0

i . Since Js′+1
i = D will never be declared abandoned, 

and since D is described by the same finite parameter as was initially picked for J0
i , the 

choice of i implies X ∼= D = limsJ
s
i . !

As before, let Ji = limsJ
s
i .

Lemma 9.3. The sequence (Ji)i∈ω mentions each isomorphism type of infinite junk struc-
tures/groups exactly once.

Proof. Fix some isomorphism type X. Suppose there is a member L = Li of the input 
list which becomes active at infinitely many stages and such that L ∼= X. Then for some 
i we will have Ji = L ∼= X. No other Jj with j (= i can be isomorphic to X. On the other 
hand, if no such Li exists then Lemma 9.2 implies that for some i we have Ji = D ∼= X, 
and again for exactly one such i. !
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Define a uniform enumeration (Zi)i∈ω which includes all of the (Li)i∈ω and further 
expand it by structures which are of the following two sorts:

• A finite structure expanding some Js
i which was declared abandoned at stage s;

• An infinite junk structure Ji = limsJ
s
i which, for some s′, will have index Js′

i

(cf. Lemma 9.2).

In particular, the first clause will cover the case when Ji = limsJ
s
i is undefined and 

thus for every s the index Js
i is eventually abandoned. It also covers the case when the 

monitored structure of isomorphism type J0
i already appears in the list (Li)i∈ω. The 

second clause covers the case when the isomorphism type of J0
i is not mentioned among 

(Li)i∈ω. With a bit of extra work, the lemmas above imply the following:

Proposition 9.4. Given a uniform list (Li)i∈ω with properties (a1)-(a3) and which is in-
jective on isomorphism types, the finite junk collector outputs a uniform list (Zi)i∈ω

which mentions each member of (Li)i∈ω exactly once and mentions each isomorphism 
type of infinite junk structures exactly once. In addition to all infinite junk structures 
and members of (Li)i∈ω, it may only contain some isomorphism types of finite struc-
tures/groups, and also without repetition.

Proof. Most of the work has already been done, it remains to check the claimed proper-
ties related to finite structures. It is clear that the extra isomorphism types may come 
from Js

i only. But by assumption (a2) they are all distinct, for at the stage at which they 
are introduced they are larger than any other finite isomorphism mentioned so far. !

This list (Zi)i∈ω will serve as the input for the finite junk collector which is described 
below.

9.2. The finite junk collector

This global strategy must ensure that every isomorphism type of a finite abelian p-
group is represented in the enumeration. As usual, we can identify such groups with 
finite equivalence relations. Recall also Modification 1.

9.2.1. Idea
We initially start with a uniform enumeration of all finite abelian p-groups. At every 

stage we have only finitely many of them already listed, and some of these finitely many 
groups may have to be further expanded to a larger finite group, but only at most once. 
This is because new finite abelian groups appear in the construction only due to the 
actions of the main module, the tree T , and the infinite junk collector. Such groups 
could be of three different kinds:
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(1) Finite abelian groups that are permanently abandoned by a node in T or a module 
working with a triple (Fi, Ej , z) due to initialisation. According to Modification 1 we 
adopted in the definition of TH(F ), if a strategy is initialised then its structure gets 
a very large simple chain. Similarly, if an equivalence structure is abandoned by a 
strategy in T then we adjoin a very large new class to it. This makes the isomorphism 
type of the abandoned finite group/equivalence structure unique at the respective 
stage.

(2) Finite abelian groups that are permanently abandoned by the infinite junk collector. 
The isomorphism type of this abandoned finite group is unique at the stage, because 
a very large finite class/summand is adjoined to it; see the description of the infinite 
junk collector.

(3) Structures that are finite approximations to a TH(F ) of some τ at a finite stage. 
According to Modification 1, at every stage s at which some progress has been made 
in the approximation of the respective TH(F ), the finite structure TH(F )[s] has its 
isomorphism type unseen so far in the construction. This is achieved by artificially 
adjoining a very long simple chain to the root of the Π0

2 p-basic tree every time the 
strategy has to temporarily stop enumerating its TH(F ).

If a group A of a sort (1), (2), or (3) is permanently put into the finite junk collector, 
then there is no isomorphic finite group already listed by the finite junk collector by this 
stage. This is because the isomorphism type of the new group is artificially made very 
large in each of the three cases. It is thus routine to make sure that these groups are 
incorporated into the enumeration, and no finite abelian p-group isomorphic to these 
will be ever introduced by the finite junk collector.

However, in case (3) the group may resume growing, and we reintroduce the finite 
isomorphism type that it had just before it grew again. This is done using a new finite 
group with a large index. We permanently put this new group into the enumeration. 
This group will never become isomorphic to any other finite group in the construction, 
because all groups produced by other strategies at later stages will have cyclic summands 
that are too big, and because the finite junk collector itself will never duplicate the finite 
group at any later stage.

9.2.2. The formal description
The input is a uniform enumeration (Zi)i∈ω of abelian p-groups. At every stage each 

finite Zi[s] is identified with the respective equivalence structure EZi[s], with all possible 
uniformity. In the construction this list is produced collectively by T , sub-modules of the 
main module, and the infinite junk collector. We will need only the following dynamic 
properties of this list. These properties are immediate consequences of Modification 1
and the analysis contained in Subsection 8.4.

(b1) At every stage s there is at most one i for which Zi[s + 1] is larger than Zi[s], in 
this case we also assume that the cardinality of Zi[s +1] is larger than any number 
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mentioned so far in the construction. This applies to the case when Zi[s + 1] is 
newly introduced too.

(b2) At every stage s the finite list (Zi[s])i≤s contains no repetition up to isomorphism.

The finite junk collector defines its own sequence (Di)i∈ω by stages, as follows.
At stage 0, set D0 equal to the empty equivalence structure/the trivial group.
At stage s, define Ds be equal to the index of the least isomorphism type (with respect 

to the natural uniform enumeration of such types) which is currently not mentioned 
among (Zk[s])k≤s and Dj , j < s. Go to the next stage.

Expand the enumeration (Zi)i∈ω by uniformly adjoining all structures (Di)i∈ω to this 
enumeration. Let (Bi)i∈ω be the resulting combined uniform enumeration.

Lemma 9.5. For every i and j, Zi ! Dj.

Proof. When Dj is defined at stage j it is set equal to a finite structure/group not 
isomorphic to any group mentioned so far in the enumeration. By property (b1), no Zi[t]
with i ≤ j can be set equal to a finite structure isomorphic to Dj since its cardinality is 
larger than the cardinality of Dj . For i > j, the structure Zi[t] is very large when it is 
introduced, and thus it cannot be isomorphic to Dj. !

Lemma 9.6. For any i (= j, Di ! Dj.

Proof. According to the instructions at stage j, no Di with i < j could be isomorphic to 
Dj . Similarly, according to the instructions at stage i, Di with i > j cannot be isomorphic 
to Dj . !

Lemma 9.7. Every isomorphism type of finite equivalence structures/finite abelian p-
groups is mentioned in (Bi)i∈ω exactly once.

Proof. Each isomorphic type is mentioned at least once by the choice of Ds at stage s. 
Indeed, assuming it is not mentioned, we would arrive at a contradiction, for eventually 
all newly introduced members of (Zi)i∈ω will be either stable or will be too large, and 
thus for some s we will have to fill in the gap using Ds. By (b1) and the two lemmas 
above, the enumeration is injective on finite isomorphism types. !

The lemmas imply the following:

Proposition 9.8. On input of a uniform enumeration (Zi)i∈ω which is injective on iso-
morphism types and satisfies (b1)-(b2), the finite junk collector produces a uniform 
enumeration (Bi)i∈ω which is injective on isomorphism types and mentions each iso-
morphism type from (Zi)i∈ω and each finite isomorphism type.

This finishes the description of the finite junk collector.
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10. The construction

We are ready to put all the essential components together. The construction consists 
of three phases. The output of the first phase is the input of the second phase, and the 
output of the second is the input of the third. Apart from this obvious correlation via 
the input/output, there is no further interaction between the three phases.

10.1. Phase 1

Fix the effective enumeration (Fi, Ej , z)i,j,z∈ω which was defined at the beginning 
of Section 5. Also, fix the tree of strategies T defined in Section 8 and the strategies 
associated with its nodes.

At the first phase we let all the basic strategies associated with each triple (Fi, Ej , z)
and the strategies associated with T act according to their instructions; the instructions 
can be found in Section 6 and Section 8, respectively.

Working together, these strategies produce a uniform enumeration (Li)i∈ω of com-
putable abelian groups which, as we shall argue, satisfy conditions (a1)-(a3) from 
Subsection 9.1.2.

10.2. Phase 2

On input the enumeration (Li)i∈ω listed at Phase 1, let the infinite junk collector act 
according to its instructions, as described in Subsection 9.1. Let (Zi)i∈ω be the uniform 
enumeration produced as the result of these actions. We will argue that (Zi)i∈ω will 
satisfy conditions (b1)-(b2) from Subsection 9.2.

10.3. Phase 3

On input (Zi)i∈ω, let the finite junk collector act according to its instructions and 
produce a uniform enumeration (Bi)i∈ω.

Finally, fix some Friedberg enumeration (Mi)i∈ω of all abelian p-groups of Ulm type 
1 which correspond to equivalence structures having finitely many classes at least one 
of which is infinite and to eventually bounded equivalence structures having infinitely 
many classes. Merge (Bi)i∈ω with (Mi)i∈ω to produce an enumeration (Ci)i∈ω. (For 
i = 0, 1, . . ., set C2i+1 = Bi and C2i = Mi.)

We will argue that (Ci)i∈ω is a Friedberg enumeration of all computable abelian 
groups of Ulm type ≤ n.

10.4. Verification

As usual, we identify equivalence structures and the respective Ulm type 1 groups 
throughout.
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Lemma 10.1. The enumeration (Li)i∈ω produced at Phase 1 has the following properties:

(1) It contains no repetition, up to isomorphism.
(2) It includes all isomorphism types of computable abelian p-groups of Ulm types m, 

1 < m < n.
(3) It mentions each isomorphism type of computable abelian p-groups having Ulm type 

1 in which there are arbitrarily large finite cyclic summands.
(4) It mentions some abelian p-groups of Ulm type 1 corresponding to infinite junk 

structures. In each of these cases the respective group Li in the list comes with 
an eventually stable sequence (lis)s∈ω such that the number li = lims lis describes the 
sizes of the finitely many exceptional classes in ELi . (If Li is not infinite junk then 
(lis)s∈ω will be divergent.)

(5) It includes some finite abelian p-groups.
(6) Apart from the isomorphism types described in (2)-(4), no further isomorphism types 

will be enumerated.
(7) It satisfies (a1)-(a3) from 9.1.2.

Proof. (2): As we argued in Section 5, every computable abelian p-group A must have 
A′ true and A/A′ proper. Theorem 3.7 implies that, for some pair (Fi, Ej) we will have 
Fi

∼= A′ and A/A′ ∼= Ej . The Σ0
4-predicate described in Section 6 holds for this pair. 

In particular, for exactly one z the basic strategy working with (Fi, Ej , z) has a true 
Π0

3-outcome; see Subsection 6.5 for the detailed analysis of the outcomes. Under this 
outcome the strategy produces THj (Fi) ∼= A.

(3): See Subsection 8.4 for a detailed analysis of the structures produced by T .
(4): This is explained in Subsection 8.5.
(5): This is merely an observation based on the descriptions of the strategies.
(6): This follows from the detailed analysis of the outcomes contained in Subsec-

tions 6.5 and 8.4.
(7): Condition (a1) is a triviality, (a2) is reformulation of (4) of this lemma, and (a3)

is Modification 2 in Subsection 8.5.
(1): We use the same notation as in the proof of (2) of this lemma. Since the enumer-

ations (Fi)i∈ω and (Ej)j∈ω are Friedberg and since we assumed uniqueness of existential 
witnesses throughout, the groups produced under true Π0

3-outcomes corresponding to 
different pairs (Fi, Ej) are non-isomorphic, and there is at most one true Π0

3-outcome 
for each such pair. The true Π0

3-outcomes of strategies along the true path of T witness 
that the construction produces a complete list of all computable equivalence structures 
having arbitrarily large finite classes; see Subsection 8.4.

Modification 2 and the analysis contained in Subsection 8.5 implies that infinite junk 
structures produced by different strategies cannot be isomorphic. Finally, Modification 
1 in the proof of Proposition 2.6 and the analysis contained in Subsection 8.4 guarantee 
that finite structures that appear in the list have no repetition, up to isomorphism; 
indeed, they all have distinct cardinalities. !
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Lemma 10.2. The enumeration (Zi)i∈ω produced at Phase 2 has the following properties:

(1) It contains no repetition, up to isomorphism.
(2) It includes all isomorphism types which appear in (Li)i∈ω.
(3) It includes all isomorphism types of infinite junk structures.
(4) It satisfies (b1) and (b2) from 9.2.2.

Proof. (1), (2), and (3) follow from Proposition 9.4, and (4) is an immediate consequence 
of Modification 1 and the analysis contained in Subsection 8.4; see also 9.2.2. !

Lemma 10.3. The enumeration (Bi)i∈ω produced at Phase 3 has the following properties:

(1) It contains no repetition, up to isomorphism.
(2) It includes all isomorphism types which appear in (Zi)i∈ω.
(3) It includes all isomorphism types of finite groups.

Proof. This is a reformulation of Proposition 9.8. !

Combining the three lemmas above, we conclude that (Bi)i∈ω is a Friedberg enumer-
ation of almost all computable Ulm type ≤ n groups. This enumeration does not include 
the following special isomorphism classes of groups, namely:

(1) abelian p-groups of Ulm type 1 which correspond to equivalence structures having 
finitely many classes at least one of which is infinite, and

(2) abelian p-groups corresponding to eventually bounded equivalence structures having 
infinitely many classes.

These two isomorphism classes have a combined uniformly computable Friedberg enu-
meration which we denoted by (Mi)i∈ω. By merging (Mi)i∈ω with (Bi)i∈ω we obtain a 
computable Friedberg enumeration of all computable Ulm type ≤ n abelian p-groups, as 
desired.
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