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Abstract. We introduce the notion of eventually uniformly weak truth table

array computable (e.u.wtt-a.c.) sets. As our main result, we show that a com-
putably enumerable (c.e.) set has this property iff it is weak truth table (wtt-)

reducible to a maximal set. Moreover, in this equivalence we may replace max-

imal sets by quasi-maximal sets, hyperhypersimple sets or dense simple sets
and we may replace wtt-reducibility by identity-bounded Turing reducibility

(or any intermediate reducibility).

Here, a set A is e.u.wtt-a.c. if there is an effective procedure which, for any

given partial wtt-functional Φ̂, yields a computable approximation g(x, s) of

the domain of Φ̂A together with a computable indicator function k(x, s) and

a computable order h(x) such that, once the indicator becomes positive, i.e.,

k(x, s) = 1, the number of the mind changes of the approximation g on x

after stage s is bounded by h(x) where, for total Φ̂A, the indicator eventually

becomes positive on almost all arguments x of Φ̂A.

In addition to our main result, we show several properties of the computably
enumerable e.u.wtt-a.c. sets. For instance, the class of these sets is closed

downwards under wtt-reductions and closed under join. Moreover, we relate

this class to – and separate it from – well known classes in the literature. On
the one hand, the class of the wtt-degrees of the c.e. e.u.wtt-a.c. sets is strictly

contained in the class of the array computable c.e. wtt-degrees. On the other

hand, every bounded low set is e.u.wtt-a.c. but there are e.u.wtt-a.c. c.e. sets
which are not bounded low. Here a set A is bounded low if A† ≤wtt ∅†, i.e.,

if A† is ω-c.a., where A† is the wtt-jump of A (Anderson, Csima and Lange
[ACL17]).

Finally, we prove that there is a strict hierarchy within the class of the

bounded low c.e. sets A depending on the order h that bounds the number of
mind changes of a computable approximation of A†, and we show that there

exists a Turing complete set A such that A† is h-c.a. for any computable order

h with h(0) > 0.

1. Introduction

The first goal of this paper is to seek to understand the computational power
of a class of computably enumerable sets, the maximal sets, in terms of what
kinds of sets they can compute, at least through the eyes of a strong reducibility.
Our answer to this question yields another goal of this paper. We introduce a
new hierarchy classifying computably enumerable sets according to their ability to
compute functions and sets, measured in terms of their “mind change” moduli.
This is in the spirit of the Strong Jump Tracing [GT18] and Downey-Greenberg
Hierarchies [DG20]. However, our new hierarchy is not aligned to either of these
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hierarchies. The new hierarchy is generated via a calibration method involving
strong reducibilities and restricted forms of the jump, which may well have further
applications. Before we turn to our results, we wish to place them in a historical
context.

1.1. Post’s Programme and Maximal Sets. Early applications of computabil-
ity theory to demonstrate problems in classical mathematics were algorithmically
undecidable all worked essentially in the same way. These proofs directly code the
halting problem into the decision question at hand. It seemed that all semidecidable
(i.e. computably enumerable, c.e.) problems, such as the Entscheidungsproblem
or the word problem for groups, were simply the halting problem in disguise under
the equivalence ≡T . This observation led to Post’s Problem which asked if there
were intermediate computably enumerable Turing degrees. That is, do there exist
c.e. degrees a with 0 <T a <T 0′?

In the quest to solve this question, Post’s Programme [Pos44] tried to find a
“thinness” property of the complement of a c.e. set which would guarantee Turing
incompleteness. In [Pos44], Post gave the motivation for this programme. Whilst
he could not solve his problem, he observed that it is possible to solve it using the
thinness approach for reducibilities stronger than Turing reducibility, such as m-
and tt-reducibilities1. For example, recall that a co-infinite c.e. set A is simple if its
complement is immune: it has no infinite c.e. subsets. Also, A is called hypersimple
if there is no computable sequence of pairwise disjoint canonical finite sets {Df(x) |
x ∈ ω} where for all x, Df(x) ∩ A 6= ∅. Post showed that if A is simple then
it has intermediate m-degree, and hypersimple sets have intermediate tt-degrees.
One reducibility stronger than T -reducibility (but weaker than tt-reducibility) is
weak truth table (wtt-) reducibility, where A ≤wtt B means that there is a Turing
procedure Φ and a computable function ϕ, such that ΦB(x) = A(x) and the use of
ΦB(x) is less than ϕ(x) for all x. If ϕ is the identity function, then we would say
A ≤ibT B (identity bounded Turing reducibility). Friedberg and Rogers [FHR59]
showed that hypersimple sets have intermediate wtt-degrees2.

It is worth noting that the concepts introduced by Post [Pos44] have been highly
influential. The original solution to Post’s Problem was by Friedberg [Fri57] and
Muchnik [Mc56]. These papers famously introduced the priority method in com-
putability theory. The concepts of immunity and hyperimmunity correlate with
various domination properties whose ramifications are still being explored today,
both in computability theory and in reverse mathematics. As well as being some
of the mainstays of computational complexity (in time bounded form) Post’s fine-
grained reducibilities have had applications especially in the theory of algorithmic
randomness as they allow for transfer of measure.

Since Post was unable to show that any of his c.e. sets with thin complements
were necessarily Turing incomplete, he suggested that perhaps there were c.e. sets
with even thinner complements. He asked if there exists a c.e. maximal set. That
is, a c.e. co-infinite set M such that for all c.e. sets W , if M ⊆ W then either

1We remind the reader that A ≤m B means that A is computable or there is a computable

function f such that x ∈ A iff f(x) ∈ B. A ≤tt B can be formulated as A ≤T B via a Turing
procedure Φ, ΦB = A, such that ΦX is total for all oracles X. Both of these reducibilities were

clarified by Post [Pos44].
2In fact Downey and Jockusch [DCJ87] showed that if A is hypersimple, then there is no set

X with A 6≤wtt X and A⊕X ≥wtt ∅′.
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M =∗ W (finitely different) or W =∗ ω. Post did not know if there was a maximal
c.e. set. In [Fri58], Friedberg gave a novel and intricate construction of a maximal
set, using a primitive form of the infinite injury method. Would such a set yield a
realization of Post’s Programme?

Alas no. We now know that Post’s Programme, in its original form, has a
negative solution since there is a Turing complete maximal set (Yates [Yat65]).
Moreover, since Soare [Soa74] showed that all maximal sets were automorphic in
the automorphism group of the lattice of c.e. sets, there are no “extra” properties
we could add to maximality which would guarantee Turing incompleteness. In-
deed, Cholak, Downey and Stob [CDS92] showed that no property of the lattice of
supersets of a c.e. set A alone can guarantee incompleteness.

Ultimately Post’s intuition that structural properties of a c.e. set in the lattice
of c.e. sets can guarantee incompleteness does have a realization. Harrington and
Soare [HS91] showed that there is an elementarily definable property Q of c.e. sets
such that Q(A) guarantees incompleteness and noncomputability, and there were
c.e. sets A such that Q(A) held.

1.2. Maximal sets. Turning the Post programme on its head, Martin [Mar66] and
Tennenbaum [Ten61] showed that maximal sets are computationally powerful, rather
than weak, as measured by Turing degree. In particular, they are all high. That is,
if M is maximal then M ′ ≡T ∅′′. Thus, computationally, they are indistinguishable
from the halting problem when we use only the Turing jump to understand them.

The high c.e. degrees are an important well-understood class. Martin realized
that the high c.e. degrees capture the computational complexity of a number of
classes of c.e. sets. He showed that the high c.e. degrees are precisely the degrees
capturing the combinatorics and computational power (in terms of ≤T ) of dense
simple, r-maximal, hyperhypersimple, and similar sets3. High sets have the ability
to compute a function g wich dominates all computable functions4. This highness
characterization in terms of domination properties has also been used in many
other contexts from computable model theory, degree theory (see Lerman [Ler85]),
algorithmic learning theory (Gold [Gol67]), algorithmic randomness (see, e.g., Nies,
Stephan and Terwijn [NST05]), etc. Similar jump characterizations such as low2

(i.e. X ′′ ≡T ∅′′) have proven very productive (Lerman [Ler85], for example).

1.3. New initiatives. Beginning with the work of Downey, Jockusch and Stob
[DJS90, DJS96], a finer classification of c.e. sets has been initiated. This classifies
sets according to the number of mind changes needed to compute approximations.
Shoenfield’s Limit Lemma says that f ≤T ∅′ iff there is a computable approximation
g(·, ·) such that g(x, s+1) 6= g(x, s) for only finitely many s and f(x) = lims g(x, s).
Going back to work of Ershov [Ers70], it is possible to understand how complex a
∆0

2 set or function is by classifying the complexity of its computable approximations
g according to their “mind change” functions:

mg(x) = |{s | g(x, s+ 1) 6= g(x, s)}|.
For example, f ≤wtt ∅′ iff there is a computable approximation g of f and a com-
putable h where mg(x) ≤ h(x). We say that f is h-c.a. (computably approximable)

3It is not important here to define these sets, save to say that they are important classes of

c.e. sets.
4That is, if f is computable then g(x) > f(x) for almost all x.
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where we usually assume that the bound h is an order, i.e., nondecreasing and
unbounded.

The [DJS90] intuition is that we can classify c.e. degrees and sets according to
the mind-change complexity of the functions computable from them. A degree
would be computationally weak in this sense if it could only compute things with
computable approximations which have few mind changes. Downey, Jockusch and
Stob studied the c.e. degrees a such that there is a computable h such that every
function f ≤T a is h-c.a. These degrees are called the array computable degrees.
They precisely capture the combinatorics of a wide class of degree classes in several
parts of computability theory. (This is elaborated in Section 7.) This idea was later
generalized by Downey and Greenberg [DG20] by using computable ordinals into
an infinite hierarchy, where array computability was the bottom of this hierarchy.
The second level is a non-uniform version of being array computable.

Definition 1.1. a is called totally ω-c.a. iff for each f ≤T a, there is a computable
h such that f is h-c.a.

Again the notion of being totally ω-c.a. captures the combinatorics of a large
number of constructions in computability theory, algorithmic randomness and ef-
fective model theory. We refer the reader to [DG20] for a detailed discussion.

Related here, and of great relevance to us, comes the notion of approximating
partial a-computable functions. Frequently this is done in terms of tracing. We say
that a set A (and its degree a) is jump traceable at order h (or h-jump traceable
for short) if, for any partial A-computable function ψ, there are uniformly c.e. sets
{Tn | n ∈ ω} with |Tn| < h(n) for all n and ψ(n) ↓ implying ψ(n) ∈ Tn. This notion
was explicitly introduced by Nies [Nie06], although the idea had been used earlier.
Certainly the idea of taming the complexity of a function using tracing had arisen in
set theory, and this was the inspiration for its use in algorithmic randomness where
it is used to characterize lowness for Schnorr randomness and helps understand
K-triviality (see Terwijn and Zambella [TZ01], Downey and Hirschfeldt [DH10]).

Jump tracing is widely used in the theory of algorithmic randomness, and is a
lowness property, in that it implies computational weakness. For example, a natural
refinement of the notion of a low set is called superlowness. A set A is superlow if
A′ ≡wtt ∅′ (equivalently, A′ ≡tt ∅′). It is easy to see that a c.e. set A is superlow iff
A is h-jump traceable for some computable order h.

1.4. The computational power of maximal sets. Our work was inspired by
the following attractive result.

Theorem 1.2 (Barmpalias, Downey and Greenberg [BDG10]). A c.e. set A is
wtt-computable from a hypersimple c.e. set iff A has totally ω-c.a. Turing degree.

Our motivating question, asked by Ambos-Spies, is

“What is the analog of Theorem 1.2 if we replace hypersimple by
maximal?”.

Our hope was that we would get a class of sets A which fell into one of the classes
totally ω-c.a., array computable, superlow, or similar classes already investigated
in the literature. Unfortunately, this is not the case. It turned out that the answer
to Ambos-Spies’s question lay not in understanding the Turing jump, but a weaker
notion called the wtt-jump.
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The way that this classification came about was quite natural. Initially, we found
that if A was a c.e. superlow set, A ≤wtt M for some maximal set M . We analysed
the proof and realized that all of the uses of the computations in the construction
had computably bounded uses, and a weaker notion being wtt-superlow sufficed.
We discuss this concept in the next subsection.

1.5. The wtt-jump. The strong reducibilities, in particular wtt-reducibility and
tt-reducibility, turned out to be a central unifying idea in algorithmic randomness
(e.g., Downey-Hirschfeldt [DH10]). This fact, plus work in many other areas using
reducibilities stronger than Turing, show that, rather than mere artifacts of defi-
nitions in classical computability theory, hierarchies related to strong reducibilities
and bounded jump operators (such as those below) can give classification and uni-
fication of combinatorics in parts of computable mathematics. As a consequence,
it seems we should better understand analogs of the core notions of classical com-
putability for such hierarchies. This paper contributes to that program.

The earliest analog of a jump operator using only bounded reducibilities is
the “mini-jump” hierarchy introduced by Ershov [Ers70] as discussed in Odifreddi
[Odi99], Chapter XI.6. Ershov’s hierarchy concerned a jump operator for the m-
degrees involving the partial m-degrees. Also a bounded analog of the jump for
tt-reductions was investigated by Gerla [Ger79].

For us the bounded jump for wtt-reductions will be of interest. As in Downey
and Greenberg [DG20], from a standard listing of all pairs consisting of a partial
Turing procedure and a partial computable function, we obtain a standard listing
{Φ̂e}e∈ω of the partial wtt-functionals together with a computable listing {ϕ̂e}e∈ω of
the corresponding partial computable use bounds (see Section 3 below for details).
Then the wtt-jump or bounded jump of a set A is defined by

A† = {〈e, x〉 : Φ̂Ae (x) ↓}.

Clearly the usual equivalences obtained by the s-m-n theorem apply. So the wtt-

jump of A is (up to m-degree) the same as the diagonal wtt-jump {e | Φ̂Ae (e) ↓}
(in the literature sometimes the latter is denoted by A†). Note that ∅′ ≡m ∅†, and
that for a c.e. set A, ∅′ ≤wtt A† ≤wtt (∅′)†. Moreover if X is ∆0

2, X† is also ∆0
2.

The analog of the idea of lowness for the bounded jump can be defined as follows.
A set A is bounded low or wtt-superlow if A† ≤wtt ∅′ (or, equivalently, A† ≤tt ∅′).
Variations of bounded lowness - all of them wtt-equivalent to this notion - have been
studied by Coles, Downey, and LaForte [CDL98], Csima, Downey and Ng [CDN11],
Anderson and Csima [AC14], Ambos-Spies, Downey and Monath [ASDMss], and
Wu and Wu [WW19]. It is easy to see that all superlow sets A are bounded low
(i.e., wtt-superlow), but below we prove that there are Turing complete bounded
low c.e. sets. (This result was independently obtained by Wu and Wu [WW19].)

We discovered that, if A is wtt-superlow, then A ≤wtt M for some maximal set
M . However, wtt-superlowness is not a necessary condition to be ≤wtt M for some
maximal M .

1.6. The main theorem. In the end, we discovered that a technical variation of
the idea above actually gives a necessary and sufficient condition. This variation
will be defined in Section 4, and is called eventually uniformly wtt-array computable.
Armed with this notion we prove the following.
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Theorem 1.3. For a c.e. A, A ≤ibT M for some maximal set M iff A ≤wtt M for
some maximal set M iff A is eventually uniformly wtt-array computable.

Moreover, in this theorem we may replace maximal sets by quasimaximal sets
or hyperhypersimple sets or dense simple sets. The proof of Theorem 1.3 is quite
technical and will be given in Section 4.

1.7. New Hierachies. We have seen that our new notion of (eventual) wtt-array
computability classifies precisely the computational power of maximal sets. Having
seen the usefulness of the ideas of array computability, superlowness, and those in
the Downey-Greenberg Hierarchy, we believe that hierarchies based around analogs
of these ideas, but concerning strong reducibilities could well prove similarly useful.
Thus we will devote the remainder of the paper to this exploration. Proofs are
given in some detail as the techniques here are new.

Since the new notions concern weak truth table reducibility, it is natural to ex-
plore these concepts via reducibilities stronger ≤T , whilst still keeping in mind how
they relate to known hierarchies. In the later sections we show that the wtt-degrees
of the eventually uniformly wtt-array computable c.e. sets form an ideal (Section 5).
We relate the e.u.wtt-a.c. sets to other lowness notions thereby giving strict lower
and upper bounds on the class of the c.e. sets with this property (and their wtt-
degrees). First we show that any wtt-superlow set is eventually uniformly wtt-array
computable (Section 6) and that any eventually uniformly wtt-array computable
c.e. set is array computable (Section 7). Then, in the final Section 8, we give sep-
arations of these concepts by showing that there are maximal sets which are not
wtt-superlow, and there are array computable c.e. sets which are not wtt-reducible
to any maximal set. Note that, by wtt-invariance of the e.u.wtt-a.c. property, these
separations extend to the corresponding wtt-degrees.

1.8. A new hierarchy of bounded lowness. In Section 6, we have a closer look
at the wtt-superlow (i.e., bounded low) c.e. sets. We remark that Anderson, Csima
and Lange already demonstrated in [ACL17] that the bounded jump and the Turing
jump are quite different with respect to the low/high hierarchy by showing the
existence of both a low set which is bounded high and a high set which is bounded
low. For example we can sharpen at least on of these results by demonstrating the
following.

Theorem 1.4. There is a T -complete wtt-superlow c.e. set.

In fact, we get more. The wtt-analog of (h-)jump traceability, (h-)wtt-jump
traceability, turns out to be equivalent to wtt-superlowness (just as jump-traceability
is equivalent to superlowness). This leads to a new hierarchy of the wtt-superlow
sets based on the growth rates of the orders h. This is a strong reducibility analog
of the Downey-Greenberg Hierarchy, but calibrates the c.e. sets in ways which are
very different from that known hierarchy.

We first show that this hierarchy is proper. This result allows us to can define
very strong lowness notions, such as A being strongly wtt-superlow if A is h-wtt-
jump traceable for all computable orders h. Theorem 1.4 can actually be improved
to say that there is a Turing complete strongly wtt-superlow set. Whilst we have
only begun exploration of this new hierarchy, we will prove this and some other
results in Section 6.
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2. Notation

We follow the standard notation as given in [Soa87]. In particular, {Φe}e∈ω de-
notes a standard enumeration of all Turing functionals, where ϕAe (x) denotes the use
of a computation of ΦAe (x) with oracle A and input x. Moreover, {ϕe}e∈ω denotes
a standard enumeration of all unary partial computable functions and {We}e∈ω,
where We = dom(ϕe) – the domain of ϕe – denotes the induced standard enumera-
tion of all c.e. sets. We let ΦAe,s(x), ϕAe,s(x) and ϕe,s(x) denote the approximation of

ΦAe (x), ϕAe (x) and ϕe(x) within s steps, respectively, and we let We,s = dom(ϕe,s).
We adapt the now commonly used Lachlan notation for approximations of com-
putations, i.e., if A is a set and {As}s∈ω is a sequence of sets approximating A in
the limit then we let ΦAe (x)[s] = ΦAse,s(x). Finally, we follow the usual convention
on converging computations, i.e., for any oracle A and any numbers e, x, y, s, if
ΦAe,s(x) ↓= y then max{e, x, y, ϕAe (x)} < s, and, similarly, if ϕe,s(x) ↓= y then
max{e, x, y} < s; in particular, we have We,s ⊆ ω � s.

3. Basic Definitions and Properties

Let us start by giving the definition of the bounded jump. The underlying
notation is mostly adapted from [DG20].

Definition 3.1 ([DG20]). For any set X ⊆ ω and for any numbers e0, e1, y ∈ ω,
let

Φ̂X〈e0,e1〉(y) =

{
ΦXe0(y) if ΦXe0(y) ↓, ϕe1(y) ↓ and ϕXe0(y) ≤ ϕe1(y),

↑ otherwise,
(1)

ϕ̂〈e0,e1〉 = ϕe1 .(2)

Given a set A, the (diagonal) bounded jump and the bounded jump function of A,

denoted by A† (A†d) and ĴA, respectively, are defined as

A† = {〈e, x〉 : Φ̂Ae (x) ↓},(3)

A†d = {e : Φ̂Ae (e) ↓}, and(4)

ĴA(e) = Φ̂Ae (e).(5)

For notational convenience, we define the bounded jump A† of a set A such that
A† codes all computations of partial wtt-functionals instead of only the diagonal

computations, the latter one being denoted by A†d. However, it is easy to see that

A† and A†d are computably isomorphic (see clause 3. of Lemma 3.4 below). Before

we start examining some of the properties of A† and ĴA for a (c.e.) set A, let us

make some general remarks on the definition of Φ̂e and introduce some terminology
to be used below which is also mostly taken from [DG20]. First of all, we say that
a Turing functional Φ is a wtt-functional if there exists a number e ∈ ω such that
Φ = Φ̂e. Note that, for any set A and any total function g, g ≤wtt A holds iff there
exists e ∈ ω such that g = Φ̂Ae . So {Φ̂e}e∈ω incorporates all wtt-reductions.

Using {Φ̂e}e∈ω, we may extend the definition of being wtt-reducible to a set A to
partial functions. We say that a partial function ϕ : ω → ω is wtt-reducible to a set
A, and denote it by ϕ ≤wtt A, if there exists e ∈ ω such that ϕ = Φ̂Ae . Furthermore,
for sets A and B, we say that A is bounded computably enumerable in B, bounded
c.e. in B or bounded B-c.e. for short, if there exists a partial function ϕ such that
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ϕ is wtt-reducible to B and A = dom(ϕ). In particular, A† is bounded c.e. in A for
all sets A.

We fix computable approximations Φ̂X〈e0,e1〉,s(y) (s ≥ 0) of Φ̂X〈e0,e1〉(y) where

Φ̂X〈e0,e1〉,s(y) is defined iff Φ̂X〈e0,e1〉(y), ΦXe0,s(y) and ϕe1,s(y) are defined. Then, for

any c.e. set A and any fixed computable enumeration {As}s∈ω of A, we have a
canonical approximation to A†, denoted by {A†s}s∈ω, such that, for all numbers e, x,

we have that 〈e, x〉 ∈ A†s iff Φ̂Ae (x)[s] ↓. We tacitly assume that this approximation
to A† is clear from the context whenever a c.e. set A and a computable enumeration
of A is given to or constructed by us. Note that if Φ̂Ae (x)[s] ↓ holds for infinitely

many stages s then Φ̂Ae (x) ↓ holds as the use of Φ̂e is bounded (this does not hold
for Turing functionals in general).

Moreover, we will often make use of the Recursion Theorem (with Parameters)

with respect to {Φ̂e}e∈ω. For that, we need the following definition.

Definition 3.2. A sequence of wtt-functionals {Ψe}e∈ω is uniformly computable if
{Ψe}e∈ω is uniformly computable in the sense of Turing functionals and there exists
a uniformly computable sequence of partial computable functions {ψe}e∈ω such that,
for any e ∈ ω, the use of Ψe is bounded by ψe.

Then the following lemma says that {Φ̂e}e∈ω is a Gödel numbering of the wtt-
functionals whence we may argue as in the proof of the classical Recursion Theorem
(with Parameters) that the Recursion Theorem also holds for uniformly computable
sequences of wtt-functionals.

Lemma 3.3 (Recursion Theorem (with Parameters)). Let {Ψe}e∈ω be a sequence
of wtt-functionals and g : ω → ω and H : ω2 → ω be total computable functions.
Then the following holds.

1. {Ψe}e∈ω is uniformly computable iff there exists a computable one-one func-

tion f : ω → ω such that ΨA
e = Φ̂Af(e) holds for any number e and any set

A.
2. There exists e ∈ ω such that Φ̂g(e) = Φ̂e.

3. There exists a computable function h : ω → ω such that Φ̂h(e) = Φ̂H(h(e),e)

holds for any e ∈ ω.

Proof. For the ”only if”-part of clause 1., note that a sequence {Φ̂f(e)}e∈ω, where
f : ω → ω is a computable function, is a uniformly computable sequence of wtt-
functionals since the use bound {ϕ̂f(e)}e∈ω is a uniformly computable sequence of
partial computable functions. For the ”if”-direction, by Definition 3.2, we may fix
computable one-one functions fi : ω → ω (i ≤ 1) such that, for any e ∈ ω, we have
Ψe = Φf0(e) and ψe = ϕf1(e). Then, by (1) and by assumption on Ψe, we have that

Ψe = Φ̂f(e) for the computable one-one function f(e) = 〈f0(e), f1(e)〉.
For the proofs of clauses 2. and 3., it is easy to see that the proofs of the

Recursion Theorem and the Recursion Theorem with Parameters can be carried
out in the setting of uniformly computable wtt-functionals. In the following, we
give a sketch of the proofs by outlining the critical parts.

For clause 2., the proof is as follows. For any numbers e, x ∈ ω and any set A,
let

ΨA
e (x) =

{
Φ̂Aϕe(e)(x) if ϕe(e) ↓,
↑ otherwise.
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Then the sequence {Ψe}e∈ω is a uniformly computable sequence of Turing func-
tionals whose use if uniformly bounded by ψe(x) = ϕ̂ϕe(e)(x). So since {ψe}e∈ω is
a uniformly computable sequence of partial computable functions, by clause 1., we
may fix a computable function d : ω → ω such that ΨA

e = Φ̂Ad(e) holds for any e ∈ ω
and any set A, and we may fix i ∈ ω such that ϕi(x) = g(d(x)). Then, by virtually
the same argument as in the proof of the classical Recursion Theorem, it follows
that e = d(i) is a fixed point for g.

For clause 3., we argue analogously. Let

ΨA
〈x,y〉(z) =

{
Φ̂Aϕx(〈x,y〉)(z) if ϕx(〈x, y〉) ↓,
↑ otherwise.

Then since {Ψe}e∈ω is clearly a uniformly computable sequence of Turing function-
als and {ψe}e∈ω, where ψ〈x,y〉(z) = ϕ̂ϕx(〈x,y〉)(z) is a uniformly computable sequence

of partial computable functions bounding the use of ΨA
〈x,y〉 for any x, y ∈ ω and any

set A, we may easily argue as in the proof of the Recursion Theorem with Parame-
ters that h(x) = d(i, x) is as desired, where, by clause 1., d : ω2 → ω is chosen such

that ΨA
〈x,y〉 = Φ̂Ad(x,y) holds and i ∈ ω is chosen such that ϕi(〈x, y〉) = H(d(x, y), y)

holds for all x, y ∈ ω. �

It is natural to ask what properties the bounded jump operator share with the
classical Turing jump operator if we replace Turing reductions by wtt-reductions.
In the following lemma, we list some of the common properties which can be found
in [DG20, p.30pp].

Lemma 3.4 ([DG20]). Let A and B be any (not necessarily c.e.) sets. Then the
following holds.

1. If A ≤wtt B then there exists a strictly increasing computable function
f : ω → ω such that, for any e ∈ ω, Φ̂Ae = Φ̂Bf(e).

2. A† is 1-complete for the class of the bounded A-c.e. sets. In particular, ∅′
is computably isomorphic to ∅†.

3. There exists a strictly increasing computable function f : ω → ω such that,
for any e, x and any set A, Φ̂Ae (x) = ĴA(f(〈e, x〉)). Hence, A† is computably

isomorphic to A†d.

4. A <wtt A
†.

5. A ≤wtt B implies A† ≤1 B
†.

However, not every property of the Turing jump carries over to the bounded
jump as the following lemma of [DG20] shows.

Lemma 3.5 ([DG20], Lemma 3.6). There is a c.e. set B and a set A such that
A† ≤1 B

† holds but A 6≤wtt B.

The fact that the converse of clause 5. in Lemma 3.4 fails is due to the fact that
the Complement Lemma does not carry over to bounded-c.e. sets as Downey and
Greenberg also show in [DG20, Proposition 3.1(3)]. However, the proof of Lemma
3.5 (and similarly for [DG20, Proposition 3.1(3)]) builds on the fact that the set
A constructed there may change its mind whether a given x is in A or not more
than once. This leaves the question open whether the Complement Lemma and
hence the converse of clause 5. in Lemma 3.4 hold if A is chosen to be computably
enumerable. We can affirmatively answer both questions.
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Lemma 3.6. For any sets A and B such that A is c.e. or co-c.e., if A and A are
bounded-c.e. in B then A ≤wtt B. In particular, if A and B are c.e. then A† ≤1 B

†

implies that A ≤wtt B holds.

Proof. For a proof of the first part of the lemma, fix sets A and B such that A
is c.e. or co-c.e. and A and A are bounded-c.e. in B. By A ≡wtt A w.l.o.g. we
may assume that A is computably enumerable. So fix a computable enumeration
{As}s∈ω of A and fix a number e such that A = dom(Φ̂Be ). Then we can compute
A from B by a Turing reduction whose use is computably bounded as follows.

Let f(x) = µs(x ∈ As or ϕ̂e,s(x) ↓). Then f is a total computable function as
ϕ̂e(x) ↓ holds for any number x 6∈ A. Given x, with oracle B compute the least

stage s ≥ f(x) such that either x ∈ As or Φ̂Be,s(x) ↓. Then, by our assumptions
on A, stage s exists, and x ∈ A iff x ∈ As. Moreover, since, by the convention on
converging computations, ϕ̂e(x) < f(x) if ϕ̂e(x) ↓, B � f(x) can compute the stage
s.

For the second part of Lemma 3.6, it suffices to note that A† ≤1 B
† implies that

A and A are bounded-c.e. in B. So the second part follows from the first part. �

Next, we formulate and prove the main result of this paper.

4. C.E. Sets Which Are Bounded Turing Reducible To Maximal Sets

For our main result, we make the following definition.

Definition 4.1. A set A is eventually uniformly wtt-array computable (e.u.wtt-a.c.
for short) if there exist computable functions g, k : ω2 → {0, 1} and a computable
order h : ω → ω such that, for all e, x,

A†(x) = lim
s→∞

g(x, s),(6)

k(x, s) ≤ k(x, s+ 1),(7)

k(x, s) = 1⇒ |{t ≥ s : g(x, t+ 1) 6= g(x, t)}| ≤ h(x),(8)

∀e (Φ̂Ae total ⇒ ∀∞x ∃s (k(〈e, x〉, s) = 1)).(9)

For functions g, k and h as above, we say that A is eventually uniformly wtt-
array computable via g, k and h, and we let EUwttAC denote the class of all c.e.
e.u.wtt-a.c. sets.

Now the main result is as follows.

Theorem 4.2 (Characterization Theorem). For a c.e. set A the following are
equivalent.

(i) A is eventually uniformly wtt-array computable.
(ii) A is wtt-reducible to some maximal (quasi-maximal, hh-simple, dense sim-

ple) set.
(iii) A is ibT-reducible to some maximal (quasi-maximal, hh-simple, dense sim-

ple) set.

Since ibT -reducibility is stronger than wtt-reducibility, for a proof of Theorem
4.2 it suffices to prove the implications (i)⇒ (iii) and (ii)⇒ (i). In fact, since the
strength of the simplicity notions considered here is ordered by

maximal ⇒ quasi-maximal ⇒ hh-simple ⇒ dense simple
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(see, e.g., Soare [Soa87], page 211), in the proof of the former implication it suffices
to consider maximal sets, and in the proof of the latter implication it suffices to
consider dense simple sets. So Theorem 4.2 follows from the following two theorems.

Theorem 4.3. Let A be c.e. and eventually uniformly wtt-array computable. Then
A is ibT-reducible to some maximal set.

Theorem 4.4. Let A and D be c.e. sets such that A ≤wtt D and D is dense simple.
Then A is eventually uniformly wtt-array computable.

In the remainder of this section we prove these two theorems.

Proof of Theorem 4.3. Let {As}s∈ω be a computable enumeration of A and fix

computable functions ĝ, k̂ and ĥ which witness that A is e.u.wtt-a.c. according to
Definition 4.1. We construct a c.e. set M in stages s, where Ms denotes the finite
set of numbers which are enumerated into M by stage s, such that M is maximal
and A ≤ibT M . Clearly, any such M witnesses that Theorem 4.3 holds.

Before we give the formal construction, let us discuss some of the ideas behind it
and introduce some of the concepts to be used in the construction. We start with
the task of making M maximal.

In order to make M maximal, it suffices to ensure that the complement of M is
infinite,

(10) |M | = ω,

and that M meets the requirements

Re : M ⊆∗ We or M ⊆∗ We.(11)

for e ∈ ω.
In order to achieve these goals, just as in the classical maximal set construction

(as for instance in Soare [Soa87]), we use n-states and “optimize” the states of
almost all elements in M . Since we use a priority tree here, however, in our defini-
tion of the states the infinitary outcome (corresponding to the case that We ∩M
is infinite) is denoted by 0 (as common on priority trees) and not by 1 as in the
classical definition of states. So here the n-state of a number x at stage s is the
unique binary string σ(n, x, s) of length n such that, for e < n,

σ(n, x, s)(e) = 0 iff x ∈We,s,

and the (true) n-state of x is the unique binary string σ(n, x) of length n such that,
for e < n,

σ(n, x)(e) = 0 iff x ∈We.

Note that requirements R0, . . . ,Rn are met if almost all elements of M have the
same (n + 1)-state. So, in order to meet the maximal set requirements, it suffices
to guarantee that, for any n ≥ 0, almost all numbers in M have the same n-state.
In the construction of M we achieve this by attempting to minimize the n-states of
the numbers in M (which corresponds to the classical strategy of maximizing the
(classically defined) n-states).

For this sake we use the full binary tree T = {0, 1}<ω as the priority tree.
Elements of T are called nodes. As usual, we say for two nodes α and β that α has
higher priority than β and denote it by α < β iff α @ β (i.e., α is a proper initial
segment of β) or α is to the left of β, denoted by α <L β, i.e., there exists γ ∈ T
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such that γ0 v α and γ1 v β. Nodes are viewed as states in the following sense. A
node α ∈ T of length n codes the guess that there are infinitely many numbers in M
with n-state α. Then, assuming that M is infinite, there is a leftmost path through
T such that, for any node α on this path, there are infinitely many elements of M
which have state α. So it suffices to guarantee that almost all elements of M have
state α.

In order to approximate the true path, for any node α and any stage s, we let

Vα,s = Ms � s ∩ {y : σ(|α|, y, s) = α}
= Ms � s ∩ {y : ∀ e < |α| (y ∈We,s ⇔ α(e) = 0)}

and

Vα = M ∩ {y : σ(|α|, y) = α} = M ∩ {y : ∀ e < |α| (y ∈We ⇔ α(e) = 0)},

and we use the following length of agreement function

l(α, s) = |Vα,s|.(12)

Based on l(α, s), we define the set of α-stages by induction on |α| as follows. Every
stage is a λ-stage. An α-stage s is called α-expansionary if s = 0 or l(α0, s) >
l(α0, t) holds for all α-stages t < s. Then a stage s is an α0-stage if it is α-
expansionary and an α1-stage if it is an α-stage but not α-expansionary. At stage
s, the current approximation δs of the true path is the unique node α of length s
such that s is an α-stage, and we say that α is accessible at stage s + 1 if α is an
initial segment of δs, i.e., α v δs. Then the true path TP through T is defined by
TP = lim infs→∞ δs, i.e., TP � n is the leftmost node of length n which is accessible
infinitely often (for every n).

Next we explore under which assumptions on M the true path TP actually has
the desired properties, i.e., satisfies that, for any n, TP � n is the leftmost node α
of length n such that Vα is infinite. We start with some observations. Note that

(13) Vα0,s = Vα,s ∩W|α|,s and Vα1,s = Vα,s ∩W|α|,s.

So Vα,s is the disjoint union of Vα0,s and Vα1,s,

(14) Vα,s = Vα0,s ∪̇ Vα1,s,

and

(15) l(α, s) = l(α0, s) + l(α1, s).

Note that the analog of (14) holds for Vα, too, and that the equation can be
extended to

(16) Vα,s =
⋃̇
|β|=n

Vαβ,s and Vα =
⋃̇
|β|=n

Vαβ

for any n ≥ 0. Next note that, for any node α, {Vα,s}s∈ω is a computable approxi-
mation of Vα, i.e., for any number y,

(17) Vα(y) = lim
s→∞

Vα,s(y).

Moreover, a number y ∈ Vα,s is in Vα unless y is enumerated into M after stage s
or the |α|-state of y decreases after stage s. So, if we let

V̂α =
⋃

{α′:|α′|=|α| & α′≤Lα}

Vα′ ,
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then

(18) V̂α = M ∩
( ⋃
s∈ω

⋃
{α′:|α′|=|α| & α′≤Lα}

Vα′,s

)
.

In fact, if we say that α′ is stronger than α (α′ ≺ α) if α′ <L α or α @ α′ (i.e.,
viewed as a state, either α′ is less than α or α′ contains more information than α)

then, by the definition of V̂α and (16), V̂α′ ⊆ V̂α for any α′ which is stronger than
α whence

(19) V̂α =
⋃

{α′:α′�α}

Vα′ = M ∩
( ⋃
s∈ω

⋃
{α′:α′�α}

Vα′,s

)
.

We can now state the two crucial facts on TP used in the proof.

Claim 1 (Infinity Lemma). Assume (10). For any node α @ TP , the set Sα of
the α-stages is infinite and

(20) lim
s→∞, s∈Sα

l(α, s) = ω.

Moreover, if α′ is to the left of TP then Sα′ and V̂α′ are finite.

Proof. For a proof of the first part, fix α @ TP . The infinity of Sα is immediate
by the definition of TP . The proof of (20) is by induction on |α|. We distinguish
the following three cases. First assume that α = λ. Then Sα = ω and Vλ = M . So
(20) holds by the infinity of M . Next assume that α = α̂0 for some node α̂. Then,
by α @ TP there are infinitely many α̂-expansionary stages. So Sα is infinite and
(20) holds by definition. Finally assume that α = α̂1 for some node α̂. Then, by
α̂1 @ TP , there are only finitely many α̂0-stages, whence l(α̂0, s) is bounded. By
the former, Sα =∗ Sα̂ while, by the latter and by (15), there is a constant c such
that l(α, s) + c ≥ l(α̂, s) for all stages s. So infinity of (20) follows by the inductive
hypothesis.

For a proof of the second part, fix α′ to the left of TP , let α = TP � |α′| and let
α̂ be the longest common initial segment of α′ and α. Then α̂0 v α′ and α̂1 v α
whence α̂ and α̂1 are on the true path. By the definition of TP , it follows that Sα̂0 is
finite. Since, by α̂0 v α′, Sα′ ⊆ Sα̂0, Sα′ is finite, too. Finally, in order to show that
V̂α′ is finite, for a contradiction assume that V̂α′ is infinite. Since V̂α′ is the finite
union of the sets Vα′′ where |α′′| = |α′| and α′′ ≤L α′, for notational convenience,
w.l.o.g. we may assume that Vα′ is infinite. It follows that Vα̂0 is infinite since, by
α̂0 v α′, Vα′ ⊆ Vα̂0. By (17) this implies that lims→ωl(α̂0) = ω. Since, by α̂ @ TP ,
Sα̂ is infinite, it follows that there are infinitely many α̂-expansionary stages, hence
Sα̂0 is infinite contradicting the above observation that Sα̂0 is finite. �

Claim 2 (Maximal Set Lemma). Assume that M is c.e. and coinfinite. If, for

any α @ TP , M ⊆∗ V̂α then M is maximal.

Proof. Since V̂α is the finite union of Vα and the sets Vα′ such that α′ <L α
and |α′| = |α|, it follows by the second part of the Infinity Lemma that M ⊆∗ Vα
for all α @ TP . So, for any n ≥ 0, almost all numbers in M have (n + 1)-state
TP � n+ 1. As pointed out before, this implies that all requirements Rn are met.
Since, by assumption, M is c.e. and coinfinite this implies that M is maximal. �

The Infinity Lemma shows that (assuming M is infinite), for any α on the true
path and for any numbers r and k, there are infinitely many stages at which α
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is accessible and where we can pick k numbers greater than r of current state α
which have not yet been enumerated into M . (Note that, for meeting a finitary
requirement we typically need such a set of numbers, where later in the construction
some of these numbers may be put into M and some of the numbers may be kept
out of M .) On the other hand, the Maximal Set Lemma tells us that if we make
sure that infinitely many of the numbers we pick in this way are kept out of M and
that, for any α @ TP , up to finitely many exceptions, only those numbers picked for
α or a stronger node α′ are kept out of M then M is maximal. These observations
lead to the following strategy ensuring maximality. We pick the numbers which
become associated with a given node α for ensuring any of the additional finitary
tasks in such a way that one of these numbers is never needed for this task (this will
ensure that M infinite). Moreover, if the task assigned to the numbers associated
with a state α can be taken over by the numbers associated with a stronger state
(or, as in the following, associated with a finite collection of stronger states) then
the original attempt becomes superfluous and we may cancel it and enumerate the
corresponding numbers into M .

Having introduced the basic technical notions needed for the maximal set strat-
egy, we now turn to the second goal of the construction, namely, to ensure that the
given computably enumerable e.u.wtt-a.c. set A is ibT-reducible to the maximal
set M that we construct. We first note that this part requires the construction of
a uniformly computable sequence of auxiliary wtt-functionals {Ψα}α∈{0,1}∗ , where
we denote the partial computable use bound of Ψα by ψα. By identifying {0, 1}∗
with ω in the standard way, by Lemma 3.3 (Recursion Theorem), we may assume
that in advance we are given a computable function f : {0, 1}∗ → ω such that

(21) Ψα = Φ̂f(α)

holds for all α ∈ {0, 1}∗. So, by letting g(〈α, x〉, s) = ĝ(〈f(α), x〉, s), k(〈α, x〉, s) =

k̂(〈f(α), x〉, s) and h(〈α, x〉) = ĥ(〈f(α), x〉), we obtain

(22) lim
s→∞

g(〈α, n〉, s) =

{
0 if ΨA

α (n) ↑,
1 otherwise

(23) k(〈α, n〉, s) ≤ k(〈α, n〉, s+ 1)

(24) k(〈α, n〉, s) = 1 ⇒ |{t ≥ s : g(〈α, n〉, t+ 1) 6= g(〈α, n〉, t)}| ≤ h(〈α, n〉)

(25) ΨA
α is total ⇒ ∀∞n ∃ s (k(〈α, n〉, s) = 1)

and we may use these equations in the construction.
Now, coming back to the second goal of the construction, in order to ensure that

A is ibT-reducible to M , we use a variant of straight permitting: if a number x
enters A at a “late” stage s then, in order to indicate that x is in A we enumerate
a number y ≤ x into M at stage s or at a later stage. Note that if we reserve
a number y for such a permitting and x does not enter A then y will not enter
M , too. So, in order to be compatible with the maximal set strategy, we have
to ensure that the states of the permitters y are sufficiently small. In order to
show that there are sufficiently many permitters of small state, we exploit that
A is eventually uniformly wtt-array computable. The basic idea of how to obtain
permitters (for almost all numbers x) of a given m-state α (on or to the right of
TP ) is as follows. We attempt to define a strong array {Bαn}n∈ω of finite sets Bαn ,
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in the following called (α-)blocks. The α-blocks are defined one after the other in
increasing order, and we ensure that the numbers in Bαn+1 are greater than the
numbers in Bαn . Moreover, when an α-block becomes defined, say, at stage s + 1
then all of its elements are not in Ms and have m-state α or stronger than α at
stage s. (Note that (assuming that M is infinite), by the Infinity Lemma, for α on
or to the right of the true path, we will find such numbers no matter how large we
want to make the blocks. So, for such α, all the α-blocks will become defined.) Now
the idea is that the numbers y in block Bαn serve as permitters for the numbers x in
the interval Iαn = [maxBαn ,maxBαn+1] (note that these intervals cover all numbers
x ≥ maxBα0 ). In order to guarantee that the size (i.e., cardinality) of Bαn is large
enough to provide the required numbers of permitters, we appropriately define the
corresponding auxiliary wtt-functional Ψα. We let ψα(n) = maxBαn+1 (if the latter

block becomes defined) be the use of ΨX
α (n). Moreover, if ψα(n) is defined then

we ensure that ΨA
α (n) is defined, too, where – exploiting that, by (22), g(〈α, n〉, s)

approximates the domain of ΨA
α – we make sure that any enumeration of a number

x ∈ Iαn in A is followed by a change of g(〈α, n〉, s+ 1) 6= g(〈α, n〉, s) at a later stage
s. Now, since ΨA

α is total, it follows by (25) that (for almost all n) there is a least
stage sn such that k(〈α, n〉, sn) = 1, and, by (24), λs.g(〈α, n〉, s) will change after
stage sn at most h(〈α, n〉) times. So if we say that a number x ∈ Iαn enters A
“late” if it does so after stage sn then h(〈α, n〉) permitters suffice for dealing with
all numbers in Iαn . So it suffices to let Bαn have size h(〈α, n〉).

The above explains how, for a single α on or to the right of the true path, we can
ensure that A ≤ibT M and at the same time only numbers of state α or a stronger
state are left in M (namely, it suffices to enumerate all numbers which are not in
any α-block into M). Moreover, by adding one more element to each α-block we
can guarantee that no α-block becomes completely enumerated into M whence M
will be infinite.

For the actual construction, however, we have to ensure that, for any α on the
true path, almost all numbers left in M have state α or stronger state. We achieve
this by (1) carrying out the above strategy for all α and by (2) suspending the
permitting numbers in block Bαn (in the actual construction we say that the block
Bαn becomes frozen) and enumerating them into M once we see that, for any number

x ∈ Iαn , there is a node α′ ≺ α and a number n′ such that x is in the interval Iα
′

n′

covered by the α′-block Bα
′

n′ and x is considered to be “late” relative to this block,
too (i.e., k(〈α′, n′〉, s) = 1 if this happens at stage s+ 1). As we will show, this will
provide the required improvements of states.

There is one technical problem left, however. We cannot achieve that, for α 6= α′,
the α-blocks and α′-blocks are disjoint. So when determining the sizes of the blocks
we have to consider possible overlaps. By allowing the α′-strategy to use a number
in the intersection of the blocks Bαn and Bα

′

n′ only if α′ is stronger than α, we have

to ensure that any block Bαn contains a core B̂αn of size h(〈α, n〉)+1 which does not
intersect any α′-block for all stronger α′. The sole purpose of the priority tree is to
resolve this problem. The interval Bαn will be defined by one of the nodes β which
extends α and has length 〈|α|, n〉. As long as Bαn is not yet defined there will be
(at most) one such β “eligible” to define Bαn . The stage when this node becomes
eligible gives a lower bound on minBαn and, by initializing a node, its eligibility
can be (temporarily) deleted. This will suffice to avoid overlaps between α-blocks
and α′-blocks for comparable α and α′ and will give an eligible node β a bound on
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the sizes of the potential overlaps in terms of the higher priority nodes currently
admissible.

Having explained the ideas of the construction and some of its technical features,
we now turn to the construction. Any stage s + 1 consists of 5 steps (Stage 0 is
vacuous).

In Step 1 the blocks are defined. We let the nodes β with α v β and |β| = 〈|α|, n〉
define the block Bαn . We call such a node β a Bαn -node and call Bαn the block
associated with β. Moreover, we call two nodes equivalent if they are associated
with the same block. If Bαn is defined by (activity of) the node β then we say that
Bαn has priority β. As long as Bαn is not yet defined, there will be at most one
Bαn -node β which is eligible. This node attempts to define Bαn . Once Bαn is defined,
no Bαn -node will be eligible. A node β can become eligible only at a stage s + 1
such that β @ δs or δs <L β. Once β is eligible, β stays eligible unless β becomes
initialized. The only effect of initialization of a node is to make it non-eligible. If
initialized, a node may become eligible at a later stage again. We write Bαn [s] ↓
if Bαn is defined by the end of Step 1 of stage s, and we write Bαn [s] ↑ otherwise.
Moreover, Bαn ↓ (Bαn ↑) denotes that Bαn is eventually defined (never defined). For
any α and n such that Bαn is defined, we let

B̂αn = {y ∈ Bαn :6 ∃α′ ≺ α 6 ∃n′ (Bα
′

n′ ↓ & y ∈ Bα
′

n′ }

be the core of Bαn . Similarly, for s such that Bαn [s] ↓, we let

B̂αn [s] = {y ∈ Bαn :6 ∃α′ ≺ α 6 ∃n′ (Bα
′

n′ [s] ↓ & y ∈ Bα
′

n′ }

be the core of Bαn at stage s.
In Steps 2 and 3, the partial use functions ψα and the wtt-functionals Ψα are

defined. We write ψα(n)[s] ↓ if ψα(n) has been defined by the end of Step 2 of
stage s and write ψα(n)[s] ↑ otherwise, and we write ΨA

α (n)[s] ↓ if ΨAs
α (n) has been

defined by the end of Step 3 of stage s and ΨA
α (n)[s] ↑ otherwise. We say that the

α-block Bαn is realized at stage s if ψα(n)[s] ↓ and we say that Bαn is truly realized
at stage s if Bαn is realized at stage s and k(〈α, n〉, s) = 1; and Bαn is realized (truly
realized) if it is realized (truly realized) at some stage. Finally, we say that x is
(truly) covered by Bαn (at stage s) – or (truly) 〈α, n〉-covered (at stage s) for short
– if 〈α, n〉 is (truly) realized (at stage s) and x ∈ [maxBαn , ψα(n)]; and we say that
x is α-covered (at stage s) if x is 〈α, n〉-covered (at stage s) for some n.

In Step 4 blocks become frozen. We say that a block Bαn is admissible at stage
s, if it is truly realized at stage s and has not been frozen by the end of Step 4 of
stage s.

In Step 5 numbers are enumerated into M , i.e., Ms+1 becomes defined.
Now, using the notation introduced above, the steps of stage s+1 are as follows.

Step 1 (Defining the blocks Bαn ). A Bαn -node β requires attention at stage
s+ 1 if one of the following holds.
(a) (i) Bαn [s] ↑

(ii) β @ δs or δs <L β and |β| < s.
(iii) Neither β nor any equivalent node β′ such that β′ <L β is eligible

at stage s.
(iv) For any node β′ such that β′ @ β, the block associated with β′

is defined at stage s.
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(v) For any node β′ such that β <L β′, |β′| = |β| and β′ is not
equivalent to β, the block associated with β′ is defined at stage
s.

(b) β is eligible at stage s, and there is a block B which is suitable for the
definition of Bαn by β at stage s+ 1. Here a block B is suitable for the
definition of Bαn by the Bαn -node β at stage s+1 if B has the following
properties.

(i) r(β, s) < minB,
(ii) B ⊆

⋃
{α′:|α′|=|α| and α′≤Lα} Vα′,s,

(iii) The block B has cardinality |B| = F (β, s) where F (γ, s) is de-
fined (by induction on γ) by

F (γ, s) = 2 +H(γ) +
∑

{γ′:γ′<Lγ and γ′ is eligible at stage s}

F (γ′, s)

where, for a Bα
′

n′ -node γ, H(γ) = h(〈α′, n′〉) (and where
∑
∅ =

0). (Note that, at any given stage s, there are only finitely many
eligible nodes, hence F (γ, s) is well-defined.)

Fix β minimal such that β requires attention.
If (a) holds then declare that β becomes eligible, set r(β′, s+ 1) = s for

all β′ ≥ β, and initialize all nodes β′ with β < β′ (i.e., no such β′ is eligible
at stage s+ 1).

If (b) holds then let Bαn = B for the least (w.r.t. the canonical index)
block B which is suitable for the definition Bαn by β at stage s + 1, let β
be the priority of Bαn , set r(β′, s + 1) = s for all β′ > β, and initialize all
nodes β′ such that β ≤ β′.

If no node requires attention then Step 1 of stage s+ 1 is vacuous.

Step 2 (Defining the partial computable use functions ψα). For any α and
any n such that either n = 0 or ψα(n − 1)[s] ↓, ψα(n)[s] ↑ and Bαn+1[s] ↓,
let ψα(n) = maxBαn+1.

Step 3 (Defining the wtt-functionals Ψα). For any α and any n such that
ψα(n)[s] ↓ let

(26) ΨA
α (n)[s+ 1] ↓ if ΨA

α (n)[s] ↑ and g(〈α, n〉, s) = 0,

and let
(27)

ΨA
α (n)[s+ 1] ↑ if ΨA

α (n)[s] ↓, g(〈α, n〉, s) = 1 and As+1 � ψα(n) 6= As � ψα(n).

In any other case let ΨA
α (n)[s+ 1] ↓ if and only if ΨA

α (n)[s] ↓.
Step 4 (Freezing blocks). A block Bαn is freezable at stage s + 1 if the
following hold.

(i) 〈|α|, n〉 < s.
(ii) Bαn is not frozen at stage s.

(iii) For any x covered by Bαn there is a block Bαxnx such that αx ≺ α, Bαxnx
is admissible at stage s, and Bαxnx covers x.

If there is a freezable block then choose q = 〈m,n〉 minimal such that there
is a freezable block Bαn with |α| = m and fix the rightmost α such that
|α| = m and Bαn is freezable. Declare that Bαn becomes frozen at stage
s+ 1.
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Step 5 (Enumerating M). A number y 6∈Ms is enumerated into M at stage
s+ 1 if (at least) one of the following hold.

(i) (Freezing) There is a block Bαn which becomes frozen in Step 4 of stage

s+ 1 and y is in the core B̂αn [s+ 1] of Bαn at stage s+ 1.
(ii) (Enumerating nonblock numbers) y is not in any block defined at stage

s+ 1 and y is less than the maximum of a block defined at stage s+ 1.
(iii) (Coding A into M) There is a node α and a number n such that the

block Bαn is admissible at stage s and

(28) ΨA
α (n)[s] ↓ and ΨA

α (n)[s+ 1] ↑
or

(29) g(〈α, n〉, s) = 1 and g(〈α, n〉, s+ 1) = 0,

holds, and y is the least element of the core B̂αn [s+ 1] of Bαn at stage
s+ 1 which is not in Ms. In this case, call y an 〈α, n〉-coding number.

This completes the construction. In the remainder of the proof we show that M
has the required properties.

We first summarize the properties of the blocks we will need.

Claim 3. The definition of the blocks satisfies the following conditions.

(B0) If Bαn becomes defined at stage s + 1 (i.e., Bαn [s + 1] ↓ and Bαn [s] ↑) then
Bαn ∩Ms = ∅.

(B1) If Bαn is defined then

Bαn ∩M ⊆
⋃

{α′:|α′|=|α| and α′≤Lα}

Vα′ .

(B2) If Bαn is defined then 〈|α|, n〉 ≤ minBαn .
(B3) If Bαn+1 is defined then Bαn is defined and maxBαn < minBαn+1.
(B4) If Bαn is defined then, for the core

B̂αn = Bαn \
⋃

{(α′,n′): α′ ≺ α, n′ ≥ 0 and Bα
′

n′ ↓}

Bα
′

n′

of Bαn , |B̂αn | > h(〈α, n〉) + 1.

(B5) If Bαn is defined and α ≺ α′ and |α′| ≤ |α| then Bα
′

n is defined, too.
(B6) Assume that M is infinite. Then, for any α on or to the right of the true

path, the blocks Bαn are defined for all n.
(B7) There is an infinite path p through T = {0, 1}∗ such that, for any α, all

blocks Bαn (n ≥ 0) are defined if and only if α is on or to the right of p.

Proof. With the exception of property (B7) the proof only depends on the
definition of the blocks and not on the other parts of the construction. In case of
(B7) we use that at any stage s+ 1 any number y which is enumerated into M at
stage s+ 1 is bounded by the maximum of some block existing at this stage.

We tacitly use that the restraint function is nondecreasing in both arguments,
i.e., r(β, s) ≤ r(β′, s′) for β ≤ β′ and s ≤ s′, and that for any pair 〈α, n〉 and any
stage s there is at most one eligible Bαn -node at stage s and there is no such node
if Bαn [s] ↓.

(B0). This is immediate by clause (ii) in the definition of suitability since, for
any node α and any stage s, Vα,s ⊆Ms.
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(B1). This is immediate by clause (ii) in the definition of suitability since, for
any node α and any stage s,

M ∩
⋃

{α′:|α′|=|α| and α′≤Lα}

Vα′,s ⊆
⋃

{α′:|α′|=|α| and α′≤Lα}

Vα′ .

(B2). If β is the priority of the block Bαn and Bαn becomes defined at stage s+ 1
then r(β, s) < minBαn by clause (i) in the definition of suitability. Moreover, there
is a stage s′ + 1 ≤ s such that β receives attention via (a) and becomes eligible at
stage s′ + 1. By clause (ii) in (a), this implies that |β| < s′ = r(β, s′ + 1) ≤ r(β, s).
Finally, since β is a Bαn -node, |β| = 〈|α|, n〉.

(B3). Assume that Bαn+1 becomes defined by β at stage s + 1. Then, for the
greatest stage t < s + 1 such that β is not eligible at stage t, t + 1 ≤ s and β
receives attention via clause (a) at stage t + 1. So, since there is Bαn -node β′ such
that β′ @ β, Bαn [t + 1] ↓ whence maxBαn ≤ t. Moreover, r(β, t + 1) = t hence, by
t+ 1 ≤ s, r(β, s) ≥ t. By the latter and by clause (i) in the definition of suitability
of a block B, it follows that t < minBαn+1, which completes the proof of (B3).

(B4). Assume that Bαn is defined. Fix the node β and the stage s+ 1 such that
Bαn has priority β and Bαn becomes defined by activity of β at stage s + 1. Then,
given any state α′ and any number n′ such that

(30) α′ ≺ α, Bα
′

n′ is defined and Bα
′

n′ ∩Bαn 6= ∅,

it suffices to show that, for the priority β′ of Bα
′

n′ ,

(31) β′ <L β,

(32) β′ is eligible at stage s,

and

(33) |Bα
′

n′ | = F (β′, s)

hold. Namely, since different blocks have different priorities, it follows that

|B̂αn | = |Bαn \
⋃
{(α′,n′): α′ ≺ α, n′ ≥ 0 and Bα

′
n′ ↓}

Bα
′

n′ |

≥ |Bαn | −
∑
{(α′,n′): α′ ≺ α, n′ ≥ 0, Bα

′
n′ ↓ and Bα

′
n′ ∩ B

α
n 6= ∅}

|Bα′n′ |

≥ F (β, s)−
∑
{β′:β′<Lβ and β′ is eligible at stage s} F (β′, s)

(by the definition of Bαn and by (30) implying (31) - (33))

≥ H(β) + 2
(by the definition of F (β, s))

= h(〈α, n〉) + 2
(by the definition of H(β))

So, assuming that (30) implies (31) - (33), (B4) holds.
Hence, for the remainder of the proof of (B4), fix α′ and n′ such that (30) holds,

and let β′ be the priority of Bα
′

n′ . We have to show that (31) - (33) hold. Fix t < s
maximal such that β is not eligible at stage t and fix t′ + 1 < s′ + 1 such that
Bα
′

n′ becomes defined via β′ at stage s′ + 1 and t′ is maximal such that t′ < s′ and
β′ is not eligible at stage t′. Note that β becomes eligible at stage t + 1, β is not
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initialized (hence eligible) at any stage u such that t + 1 ≤ u < s + 1, and Bαn is
defined by β at stage s+ 1. Hence

(34) t = r(β, t+ 1) = r(β, s) < minBαn ≤ maxBαn ≤ s.

Similarly, β′ becomes eligible at stage t′ + 1, β′ is not initialized (hence eligible) at

any stage u′ such that t′+ 1 ≤ u′ < s′+ 1, and Bα
′

n′ is defined by β′ at stage s′+ 1.
Hence

(35) t′ = r(β′, t′ + 1) = r(β′, s′) < minBα
′

n′ ≤ maxBα
′

n′ ≤ s′.

Moreover, any node γ with β < γ is initialized at stages t + 1 and s + 1, and any
node γ′ with β′ < γ′ is initialized at stages t′ + 1 and s′ + 1. Finally note that, by
(α, n) 6= (α′, n′), β 6= β′ and the stages t, s, t′, s′ are pairwise distinct.

Now, the proof of (31) - (33) is in two steps: before we prove (31), we show
that (31) implies (32) and (33). So assume (31). Now, if s′ + 1 < s + 1 then (by
(31)) β is initialized at stage s′ + 1 hence s′ + 1 < t + 1. So, by (34) and (35),

maxBα
′

n′ < minBαn contradicting (30). Similarly, if s+ 1 < t′+ 1, then by (34) and

(35), maxBαn < minBα
′

n′ , again contradicting (30). So t′ + 1 < s+ 1 < s′ + 1 must
hold. Now (35) is immediate by the choice of t′. Moreover, again by the choice of
t′, no node γ ≤ β′ is initialized at any stage u′ ∈ [t′ + 1, s′ + 1), whence no node
γ′ < β′ becomes active at any such stage. So a node γ′ < β′ is eligible at stage
s if and only if it is eligible at stage s′. By the definition of F , this implies that
F (β′, s) = F (β′, s′). Equation (33) follows since |Bα′n′ | = F (β′, s′).

It remains to establish (31). By assumption α′ ≺ α, hence α′ <L α or α @ α′. In
the former case, (31) is immediate since α′ v β′ and α v β. So, for the remainder
of the argument assume that α @ α′ and, for a contradiction, assume that (31) fails,

i.e. that β′ @ β or β @ β′ or β <L β
′. If β′ @ β then, by construction, Bα

′

n′ has to be

defined before β can become eligible, i.e., s′ + 1 < t+ 1 whence maxBα
′

n′ < minBαn
contrary to (30). Similarly, if β @ β′ then s+ 1 < t′ + 1 hence maxBαn < minBα

′

n′

contrary to (30).
This leaves the case that β <L β′. If s′ + 1 < t + 1 or s + 1 < s′ + 1 then, as

above, we may conclude from (34) and (35) that (30) fails (note that in the latter
case, s+ 1 < t′ + 1 by β < β′). So w.l.o.g. t+ 1 < s′ + 1 < s+ 1. But since α @ α′

and since β < β′, Vα′,s′ ⊆ Vα,s′ , F (β, s′) ≤ F (β′, s′) and r(β, s′) ≤ r(β′, s′). So

since the block Bα
′

n′ is suitable for β′ at stage s′ + 1, Bα
′

n′ or a subblock B of it will
be suitable for β at stage s′ + 1, too. So, since β is eligible at stage s′ + 1, β will
require attention at stage s′ + 1. Since β < β′, this contradicts the fact that β′

receives attention. This completes the proof of (31) and the proof of (B4).
(B5). Fix α, α′ and n such that Bαn ↓ and either α′ @ α or α <L α

′ and |α| = |α′|.
It suffices to show Bα

′

n ↓. (Then the claim follows by induction on |α|.) Let β be
the priority of Bαn and fix the least stage s + 1 at which β becomes eligible hence
requires attention via clause (a). Then the subclauses (iv) and (v) of (a) guarantee
that, for any node β′ such that either β′ @ β or β <L β

′, |β| = |β′| and β and β′

are not equivalent, the block associated with β′ is defined at stage s. But if α′ @ α
then Bα

′

n is associated with the proper initial segment β′ = β � 〈|α′|, n〉 of β and

if α <L α
′ and |α| = |α′| then Bα

′

n is associated with the node β′ = α′1|β|−|α| and

β <L β
′, |β| = |β′| and β and β′ are not equivalent. So in either case Bα

′

n ↓.
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(B6). The proof is indirect. Assume that M is infinite and that there is a node
α and a number n such that TP � |α| ≤L α and Bαn is not defined. Fix q = 〈m,n〉
minimal such that there is a node α of length m such that TP � m ≤L α and
Bαn is not defined and fix the rightmost corresponding α. Moreover, let β be the
rightmost Bαn -node. (Note that β = α1q−m. In particular, α v β, |β| = q and, by
TP � |α| ≤L α and by the definition of β, TP � q ≤L β.)

We claim that there is a stage s∗ such that no node β′ with β′ < β which is not
equivalent to β requires attention after stage s∗. This is shown as follows. Note
that any node β′ with β′ < β which is not equivalent to β is element of one of the
following sets.

N0 = {β′ : |β′| ≤ |β| & β′ <L TP � |β′|}
N1 = {β′ : |β′| < |β| & TP � |β′| ≤L β′}
N2 = {β′ : |β′| = |β| & TP � |β| ≤L β′ <L β & β′ is not a Bαn -node}
N3 = {β′ : |β| < |β′| & β′ <L β}

So it suffices to show that for i ≤ 4 there is a stage si such that no node in Ni
requires attention after stage si.
i = 0. Fix t0 minimal such that TP � q < δs for all stages s ≥ t0. Then no

β′ ∈ N0 can become eligible after stage t0. So whenever a node β′ ∈ N0 requires
attention at a stage s+ 1 > t0, either the block associated with β′ becomes defined
(namely, if β′ acts at stage s + 1) or β′ becomes initialized (namely, if a higher
priority node β′′ < β′ acts at stage s + 1). In either case β′ will not require
attention after stage s+ 1. Since N0 is finite, this gives the existence of the desired
stage s0.
i = 1. Note that by the minimality of q, any node β′ ∈ N1 is associated with a

block which eventually becomes defined. Since N1 is finite, this gives the existence
of the desired stage s1.
i = 2. Note that, for any β′ ∈ N2, β′ <L β, |β′| = |β| and β′ and β are not

equivalent. Since the block Bαn associated with β is never defined, it follows, by
clause (v) in the definition of requiring attention via (a), that no node in N1 will
ever require attention via (a). So s2 = 0 will do.
i = 3. If β′ ∈ N3 then, for the proper initial segment β′′ = β′ � |β| of β′ of length

|β|, either β′′ ∈ N2 or β′′ is a Bαn -node. In either case the block associated with β′′

is never defined. So, by clause (iv) in the definition of requiring attention via (a),
β′ does not require attention via (a), hence does not require attention. So s3 = 0
will do.

Having established the existence of s∗, we next claim that there is a stage t∗ > s∗

and a Bαn node β̂ such that β̂ is eligible at all stages s ≥ t∗. Since, by the choice of
s∗, a Bαn -node β′ can be initialized at a stage s+1 > s∗ only if a Bαn -node β′′ to the
left of it becomes active at stage s+ 1, and since by Bαn ↑ this implies that β′′ acts
via clause (a) hence becomes eligible at stage s + 1, it suffices to show that some
Bαn -node β′ will be eligible at some stage s + 1 > s∗. For a contradiction assume
that such β′ and s + 1 do not exist. By the minimality of q and maximality of α,

we may fix a stage s∗∗ ≥ s∗ such that for any q′ = 〈m′, n′〉 < n the block Bβ�m
′

n′

is defined at stage s∗∗ and, for any α′ with |α′| = |α| and α <L α
′, the block Bα

′

n

is defined at stage s∗∗, too. Then, for the rightmost Bαn -node β and any s ≥ s∗∗,
the subclauses (i) (by Bαn ↑), (iii) (by assumption) and (iv) and (v) (by the choice
of s∗∗) in the definition of requiring attention (a) hold at stage s. So if we let s be
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the least stage ≥ s∗∗ such that TP � q @ δs then β requires attention via (a), at
stage s+ 1 hence becomes eligible (since by assumption and by the choice of s∗ no
higher priority node requires attention). Contradiction.

So, for the remainder of the argument we may fix the Bαn -node β̂ which is per-
manently eligible after stage t∗. In order to get the final contradiction, we show

that, eventually, there is a stage s + 1 > t∗ such that β̂ requires attention via (b)
at stage s + 1. Since no higher priority node requires attention after stage t∗, it
follows that the block Bαn becomes defined at stage s + 1 contrary to choice of α

and n. Now, by the choice of t∗, for any node β′ ≤ β̂, eligibility of β′ does not

change after stage t∗. So r(β̂, s) = r(β̂, t∗) and F (β̂, s) = F (β̂, t∗).

So in order to show that β̂ eventually requires attention via (b), it suffices to
show that there is a stage s ≥ t∗ such that

|
⋃

{α′:|α′|=|α| and α′≤Lα}

Vα′,s| > r(β̂, t∗) + F (β̂, t∗).

But, since TP � m ≤L α, this follows from the fact, that, by the assumption that
M is infinite and by the True Path Lemma, VTP �m is infinite.

This completes the proof of (B6).
(B7). First note that infinitely many blocks become defined. (Namely, otherwise,

it follows that M is finite since any number y which is enumerated into M at stage
s + 1 is less than or equal to the maximum of a block Bαn defined at stage s. So,
by (B6), infinitely many blocks will be defined contrary to assumption.) Now, call
a node β a block node if for all β′ v β the block associated with β′ is defined,
and let B be the set of all block nodes. Note that any initial segment of a block
node is a block node again, and any priority of a block which becomes defined is a
block node. Moreover, for 〈α, n〉 6= 〈α′, n′〉, the blocks Bαn and Bα

′

n′ (if defined) have
different priorities. Since infinitely many blocks become defined, we may conclude
that the set B of block nodes is an infinite subtree of the priority tree T = {0, 1}∗.

Now, by König’s Lemma, let p be the leftmost infinite path through B. To show
that p has the required properties, first fix α on p and n ≥ 0. Then β = p � 〈|α|, n〉
is a block node and Bαn is associated with β. So Bαn is defined. By (B4) we may
conclude that, for α to the right of the path p, the blocks Bαn (n ≥ 0) are defined,
too. Finally, fix α to the left of p and, for a contradiction, assume that Bαn is defined
for all n ≥ 0. Then, the set of priorities βn of the blocks Bαn , n ≥ 0, is an infinite
subset of nodes in B all extending the node α. By α <L p and by König’s Lemma
this contradicts the fact that p is the leftmost infinite path through B.

This completes the proof of (B7) and the proof of Claim 3. �

Next we summarize relevant properties of the use functions ψα and the wtt-
functionals Ψα.

Claim 4. The partial functions ψα, α ∈ {0, 1}∗, are uniformly computable.
Moreover, for any α, the domain of ψα (at stage s) is an initial segment of ω,
and ψα is strictly increasing on its domain. Finally, ψα is total if and only if the
blocks Bαn are defined for all n ≥ 0.

Proof. Uniform computability follows by the effectivity of (part 1 of) the con-
struction. The second part of the claim is immediate by definition and by (B3).
The third part is immediate by definition. �
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Claim 5. The functionals Ψα are uniformly computable and, for any X, α and
n such that ΨX

α (n) is defined, ψα(n) is defined and the use of ΨX
α (n) is bounded by

ψα(n). Moreover, for any α and n such that ψα(n) is defined, ΨA
α (n) is defined,

too.

Proof. The proof of the first part is straightforward. For a proof of the second
part, for a contradiction assume ψα(n) ↓ and ΨA

α (n) ↓. Since Ψ is a wtt-functional,
it follows that ΨA

α (n)[s] ↑ for almost all s. Moreover, by (22), g(〈α, n〉, s) = 0 for
almost all s. So there is a least stage s0 such that ψα(n)[s0] ↓ and ΨA

α (n) ↑ and
g(〈α, n〉, s) = 0 for all stages s ≥ s0. By clause (26) in the definition of Ψ, this
implies ΨA

α (n)[s0 + 1] ↓. Contradiction. �

Note that the first part of Claim 5 justifies that in advance we have fixed a
computable function f satisfying (21).

Claim 6. Assume that ψα is total. Then the following hold.

(i) ΨA
α is total.

(ii) There is a number nα such that, for any n ≥ nα, there is a stage s such
that k(〈α, n〉, s) = 1.

Proof. Part (i) is immediate by the second part of Claim 5. Part (ii) follows
from part (i) by (23) and (25). �

For the remaining claims we need some more notation. Let p be the unique path
through T defined in (B7). Then, for any node α such that α @ p or p <L α, all
blocks Bαn are defined. So, by Claims 4 and 6, ψα and ΨA

α are total and we may
fix nα such that lims→∞ k(〈α, n〉, s) = 1 for all n ≥ nα. It follows that, for n ≥ nα,
the block Bαn will eventually become truly realized. So, if we let xα = maxBαnα ,
then all numbers x ≥ xα are eventually truly α-covered. Hence, for such x we may
fix nαx and sαx such that nαx is the unique n such that x becomes covered by Bαn and
sαx is the least stage s such that x is truly covered by Bαnαx at stage s.

Claim 7. Let α @ p and let x ≥ xα. There is a node α′ � α, a number n ≥ 0
and a stage t such that the block Bα

′

n covers x and is admissible at all stages s ≥ t
(hence is never frozen).

Proof. Note that, by (B2), there are only finitely many blocks which may cover
x. So there is a stage t0 such that any block which covers x and becomes frozen
is frozen by stage t0. So it suffices to show that, for almost all stages s, there is a
block Bα

′

n such that α′ � α, Bα
′

n covers x and Bα
′

n is admissible at stage s. This is
established by proving the following two facts. (a) There is a stage s such that x is

covered by a block Bα
′

n where α′ � α and Bα
′

n is admissible at stage s. (b) If x is

covered by a block Bα
′

n which is admissible at stage s then, at any stage s′ > s, x

is covered by a block Bα
′′

n′ such that α′′ � α′ and Bα
′′

n′ is admissible at stage s′.
For a proof of (a) recall that x will be truly α-covered eventually. So there is a

stage s and a number n such that the block Bαn truly covers x at stage s. If Bαn is
not frozen at stage s then Bαn is admissible at stage s and we are done. Otherwise,
there is a stage ŝ ≤ s such that Bαn becomes frozen at stage ŝ. But, by construction,

this implies that there is a block Bα
′

n′ such that α′ � α, Bα
′

n′ covers x and Bα
′

n′ is
admissible at stage ŝ. So (a) holds in this case, too.

For a proof of (b), it suffices to consider the case of s′ = s+1. (Then the general

case follows by induction.) So assume that Bα
′

n covers x and is admissible at stage
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s. If Bα
′

n does not become frozen at stage s + 1 then we are done. Otherwise, it

follows by construction that there is a block Bα
′′

n′ such that α′′ � α′, Bα′′n′ covers x

and Bα
′′

n′ is admissible at stage s+ 1. This completes the proof of (b) and the proof
of the claim. �

Claim 8. Assume that Bαn becomes defined and is never frozen. Then, for the

core B̂αn of Bαn , B̂αn ∩M 6= ∅. Similarly, if Bαn is defined but not frozen at stage s

then B̂αn [s+ 1] ∩Ms 6= ∅.
Proof. We prove the first part of the claim. The second part is obtained by

straightforward modifications of the proof.
We first show that a number y ∈ B̂αn can be enumerated into M only if it is

an 〈α, n〉-coding number. For a contradiction assume that y ∈ B̂αn is enumerated
into M at stage s + 1 and y is not an 〈α, n〉-coding number. Then y cannot be
enumerated into M as a nonblock number according to clause (ii). (Namely, if
so, Bαn [s + 1] ↑. Hence Bαn becomes defined at a stage t + 1 > s + 1. But, by
(B0) this implies that Bαn ∩ Ms+1 = ∅ hence y 6∈ Bαn . The claim follows since

B̂αn ⊆ Bαn .) Since Bαn is never frozen, this leaves the case that y ∈ B̂α′n′ [s + 1] for

some 〈α′, n′〉 6= 〈α, n〉 and y is enumerated into M since Bα
′

becomes frozen at
stage s+ 1 or y is an 〈α′, n′〉-coding number. Since, by (B0), y can’t be in a block

which is not yet defined at stage s+1, it follows by y ∈ B̂α′n′ [s+1] and by definition

of the core B̂α
′

n′ that y ∈ B̂α′n′ . So it suffices to show that B̂α
′

n′ ∩ B̂αn = ∅. Since the
core of a block is contained in the block this is done as follows. If α′ = α the claim
is immediate. So, by symmetry, w.l.o.g. α′ ≺ α. But then, by the definition of B̂αn ,

Bα
′

n′ ∩ B̂αn = ∅.
Now, by the above and by construction, a number y ∈ B̂αn is enumerated into

M at stage s + 1 only if Bαn is admissible at stage s (hence k(〈α, n〉, s) = 1) and

(28) or (29) holds. Moreover, at any such stage s+ 1 at most one number y ∈ B̂αn
is enumerated into M . So, by (B0) and (B4), it suffices to show that

(36) |{s ≥ s0 : (28) or (29) holds}| < h(〈α, n〉) + 2

where s0 is minimal such that k(〈α, n〉, s0) = 1.
Since between any two stages s < s′ for which (29) holds there must be a stage

t such that g(〈α, n〉, t) = 0 and g(〈α, n〉, t+ 1) = 1,
(37)

2 · |{s ≥ s0 : (29) holds}| ≤ |{s ≥ s0 : g(〈α, n〉, s+ 1) 6= g(〈α, n〉, s)}|+ 1
≤ h(〈α, n〉) + 1

where the second inequality holds by (24). Moreover, since ΨA
α (n) ↓ by Claim 5,

any stage s at which (28) holds has to be followed by a stage t > s such that
ΨA
α (n)[t] ↑ and ΨA

α (n)[t + 1] ↓, where t < s′ for the least stage s′ > s such that
(28) holds (if there is such a stage s′). Since, by construction, g(〈α, n〉, t) = 0 and
g(〈α, n〉, s′) = 1 for any such stage t, it follows that

|{s ≥ s0 : (28) holds}| ≤ |{s ≥ s0 : (29) holds}|
holds. So, by (37), (36) holds. �

Claim 9. A ≤ibT M .

Proof. It suffices to give an effective procedure which computes A(x) from M �
x+ 1 for all sufficiently large x.
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Let x ≥ xλ and let s be the least stage such that there is a node α and a number
n such that

(I) Bαn covers x at stage s,
(II) Bαn is admissible at stage s,

(III) ΨA
α (n)[s] ↓ and g(〈α, n〉, s) = 1, and

(IV) M � x+ 1 = Ms � x+ 1.

Note that such a stage s exists. (Namely, by Claim 7, there is a block Bαn which
covers x and which is admissible at all sufficiently large stages. So (I) and (II) hold
for all sufficiently large s. Moreover, since ΨA

α (n) ↓ (by the second part of Claim
5), it follows that (III) holds for all sufficiently large s, too (by (22)). Finally,
(IV) obviously holds for all sufficiently large s.) Moreover, for any stage s, we
can effectively check whether, among the finitely many blocks defined at stage s,
there is a block Bαn satisfying (I) - (III). So we can find the above stage s by using
M � x+ 1 as an oracle.

We claim that A(x) = As(x). For a proof, first note that Bαn does not become
frozen after stage s hence is admissible at all later stages. (To wit, if Bαn becomes

frozen at stage s′ + 1 > s then B̂αn [s′] is completely enumerated into M at stage

s′ + 1 whence, by the second part of Claim 8, there is a number y ∈ B̂αn [s′ + 1]

such that y ∈ Ms′+1 \Ms′ . Since B̂αn [s′ + 1] is contained in Bαn and maxBαn ≤ x
it follows that y ≤ x hence M � x + 1 6= Ms � x + 1 contrary to (IV).) Now, for a
contradiction, assume that A(x) 6= As(x). Fix s′ ≥ s minimal such that a number
x′ ≤ x is enumerated into A at stage s′ + 1. Then, assuming that ΨA

α (n)[s′] ↓ and
g(〈α, n〉, s′) = 1, ΨA

α (n)[s′ + 1] ↑ by construction. So, in any case, there is a least
stage s′′ such that s ≤ s′′ ≤ s′ and such that (28) or (29) holds for s′ (in place of s).

It follows, by construction and by Claim 8, that there is a number y ∈ B̂αn [s′ + 1]
which is newly enumerated into M at stage s′ + 1. But, as observed before, this
contradicts (IV). �

Claim 10. M is infinite.

Proof. By (B2) and by Claim 7 there are infinitely many blocks which are never
frozen. So the claim follows by Claim 8. �

Claim 11. For any node α @ p there are only finitely many blocks Bα
′

n such that

α ≺ α′, n ≥ 0 and Bα
′

n is never frozen.

Proof. Fix α @ p. By (B2) it suffices to show that any block Bα
′

n such that

α ≺ α′ and xα ≤ maxBα
′

n becomes frozen eventually. So fix such a block Bα
′

n

and, for a contradiction, assume that Bα
′

n is never frozen. Note that, by α @ p

and α ≺ α′, α′ is on p or to the right of p whence Bα
′

n becomes defined, say, at
stage s + 1. By Claim 7 we may fix a stage t ≥ s + 1 such that, for any of the
finitely many numbers x covered by Bα

′

n there is a block Bαxnx such that αx � α

(hence αx ≺ α′), Bαxnx covers x and Bαxnx is admissible at all stages t′ ≥ t. So Bα
′

n is

freezable at all stages t′ ≥ t. Since there are only finitely many blocks Bα̂n̂ such that

〈|α̂|, n̂〉 < 〈|α′|, n〉 or 〈|α̂|, n̂〉 = 〈|α′|, n〉 and α′ <L α̂, it follows that Bα
′

n becomes
frozen eventually. Contradiction. �

Claim 12. The true path TP coincides with the path p.

Proof. Claim 10 and (B6) immediately imply that p ≤L TP . For a proof of the
converse, i.e., TP ≤L p, it suffices to show that, for any given node α′ <L TP , only
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finitely many α′-blocks become defined. Now, by Claim 10 and by the second part
of the Infinity Lemma (Claim 1), there are only finitely many stages s such that
δs <L α

′ or α′ @ δs. So only finitely many α′-nodes can become eligible, hence only
finitely many α′-blocks can be defined. �

Claim 13. For any α on TP , M ⊆∗ V̂α.

Proof. Fix α @ TP . Since (by (B1) and (19)) M ∩ Bα′n ⊆ V̂α for any block Bα
′

n

such α′ � α, it suffices to show

(38) M ⊆∗
⋃

{(α′,n): α′�α,n≥0 and Bα′n ↓}

Bα
′

n .

For a proof of (38), first recall that (by Claim 12) the true path TP coincides with

the path p. So, by Claim 11, we may let B be the finite union of the blocks Bα
′

n

such that α ≺ α′, n ≥ 0 and Bα
′

n is never frozen. Now, call a number y a block
number if y is element of some block, and call a block number y an α′-number if
α′ is ≺-minimal such that y is in an α′-block. (Note that any number is element of
at most finitely many blocks. So α′ is well-defined.) Then it suffices to show that
any number y ∈ M which is not an α′-number for some α′ � α is an element of
B. So fix such y. We first observe that y is a block number. Namely, since there
are infinitely many blocks, it follows by (B2) that there is a stage s such that y is
less than the maximum of a block defined at stage s. So if y is not a block number
then y is enumerated into M at stage s+ 1 for the least such s contrary to choice
of y. So we may fix α′ and the corresponding unique n such that y is an α′-number
and y ∈ Bα′n . It suffices to show that Bα

′

n is contained in B. For a contradiction,
assume that this is not the case. Since, by the choice of y, α � α′, this implies
that there is a stage s + 1 at which Bα

′

n becomes frozen. So B̂αn [s + 1] ⊆ Ms+1

by construction. But since y is an α′-number, y is in the core B̂α
′

n of Bα
′

n . Since,

obviously, B̂α
′

n ⊆ B̂α
′

n [s+ 1], it follows that y ∈M contrary to assumption.
This completes the proof of Claim 13. �

Claim 14. M is maximal.

Proof. By the effectivity of the construction and by Claims 10 and 13, the
hypotheses of the Maximal Set Lemma (Claim 2) are satisfied. �

By Claims 9 and 14, M has the required properties. This completes the proof
the Theorem 4.3. �

In order to complete the proof of the Characterization Theorem it remains to
prove Theorem 4.4. For this sake, we use the following characterization of the dense
simple sets given in Robinson [Rob67]: a c.e. set D is dense simple if and only if D
is coinfinite and, for every strong array {Fn}n∈ω of pairwise disjoint sets, there is
a number m such that

(39) ∀ n ≥ m (|Fn ∩D| < n).

Proof of Theorem 4.4. Fix c.e. sets A and D such that A ≤wtt D and D is dense
simple. It suffices to define computable functions g, h and k witnessing that A is
eventually uniformly wtt-array computable.

Fix a wtt-functional Γ such that A = ΓD and fix a computable function γ
such that the use of ΓD is bounded by γ where w.l.o.g. γ is strictly increasing.
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Moreover, fix computable enumerations {As}s∈ω, {Ds}s∈ω and {Γs}s∈ω of A, D
and Γ, respectively, such that the length of agreement function

l(s) = max{y : As � y = ΓDss � y}

is strictly increasing in s. (Such enumerations can be obtained by speeding up any
given computable enumerations of A, D and Γ.) Note that this ensures

(40) (x < l(s) & As+1(x) 6= As(x)) ⇒ Ds+1 � γ(x) 6= Ds � γ(x)

for all numbers x and stages s.

Now the computable functions g, k : ω2 → {0, 1} and h : ω → ω are defined as
follows. Define g by letting

g(〈e, y〉, s) =

{
1 if Φ̂Ase,s(y) ↓,
0 otherwise,

and let h be the order defined by

h(x) = (x+ 1)2.

Finally, for the definition of k, define the auxiliary uniformly partial computable
functions ϕ̃e by ϕ̃e(y) = lims→∞ ϕ̃e,s(y) where

ϕ̃e,s(y) =

{
y + max{ϕ̂e,s(y′) : y′ ≤ y} if ∀ y′ ≤ y (ϕ̂e,s(y

′) ↓),
↑ otherwise.

Note that ϕ̃e is defined on an initial segment of ω, ϕ̃e is strictly increasing on its
domain, ϕ̃e majorizes ϕ̂e on its domain, and ϕ̃e is total if ϕ̂e is total. So, for total
Φ̂Ae , ϕ̃e is total, strictly increasing and bounds the use of Φ̂Ae . Now, the 0-1-valued
function k is defined by letting k(〈e, y〉, s) = 1 iff

(41) ϕ̃e,s(y) ↓ & l(s) > ϕ̃e(y) & |Ds � γ(ϕ̃e,s(y))| < (〈e, y〉+ 1)2

2
.

Obviously, the functions g, h and k are computable, and h is an order. Moreover,
g is the canonical approximation of A† whence (6) holds. So it only remains to show
that the functions g, h and k satisfy conditions (7) - (9) in Definition 4.1, too.

For a proof of (7) it suffices to note that k is 0-1-valued and that the three clauses
in equation (41) that characterize the stages s such that k(〈e, y〉, s) = 1 persist if
we replace s by a stage t ≥ s. (For the second clause, recall that the length function
l(s) is nondecreasing in s.)

For a proof of (8) fix x = 〈e, y〉 and s such that k(x, s) = 1. By the definition of
g and h, it suffices to show that

(42) |{t ≥ s : Φ̂Ate,t(y) ↓ & Φ̂
At+1

e,t+1(y) ↑}| < (〈e, y〉+ 1)2

2
.

(Namely, (42) guarantees that g(x, t) switches from 1 to 0 less than (x + 1)2 · 2−1
times after stage s. So, since g is 0-1-valued, g may change on x after stage s at
most 2((x+ 1)2 · 2−1) (= h(x)) times.)

So fix t as in (42). Then At+1 � ϕ̂e(y) 6= At � ϕ̂e(y). Note that, by k(x, s) = 1,
(41) holds. So, by ϕ̂e(y) ≤ ϕ̃e(y) (if defined), by (40) and by the first two clauses
in (41), there is a number ≤ γ(ϕ̃e,s(y)) that is enumerated into D at stage t + 1.
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But, by the third clause in (41), the latter can happen for at most (〈e,y〉+1)2

2 − 1
stages t ≥ s. So (8) holds.

Finally, for a proof of (9), fix e such that Φ̂Ae is total. Then ϕ̃e is total, com-
putable and strictly increasing (and so is γ). So we can define a computable par-
tition of ω into nonempty intervals {Fn}n∈ω by letting F0 = [0, γ(ϕ̃e(0))) and
Fn+1 = [γ(ϕ̃e(n)), γ(ϕ̃e(n + 1))). Now, since D is dense simple, it follows, by
Robinson’s characterization of the dense simple sets given above, that there is a
number m such that (39) holds. So there is a constant c such that

|D � γ(ϕ̃e(n))| = |D � 1 + maxFn| =
∑
n′≤n

|D ∩ Fn′ | ≤ (
∑
n′≤n

n′) + c =
n(n+ 1)

2
+ c

for all n ≥ 0. Since, by y ≤ 〈e, y〉, y(y + 1) · 2−1 + c < (〈e, y〉 + 1)2 · 2−1 for all
sufficiently large y, it follows that, for almost all y, there is a stage sy such that (41)
holds for all stages s ≥ sy. So, by the definition of k(〈e, y〉, s), lims→∞ k(〈e, y〉, s) =
1 for all sufficiently large numbers y, whence (9) holds.

This completes the proof of Theorem 4.4. �

5. Closure Properties of EUwttAC

In this section, we prove that EUwttAC is closed downwards under ≤wtt and
closed under join. The former holds by the following slightly more general result
where we do not require that the sets are computably enumerable.

Lemma 5.1. Let A and B be any (not necessarily c.e.) sets such that A ≤wtt B
and such that B is e.u.wtt-a.c. Then A is e.u.wtt-a.c., too.

Proof. Fix computable functions g, k and h such that B is e.u.wtt-a.c. via g, k and
h, and, by clause 1. of Lemma 3.4, fix a computable function f such that Φ̂Ae = Φ̂Bf(e)
for e ≥ 0. Then A is e.u.wtt-a.c. via g̃, k̃ and h̃ where g̃(〈e, x〉, s) = g(〈f(e), x〉, s),
k̃(〈e, x〉, s) = k(〈f(e), x〉, s) and h̃(〈e, x〉) = h(〈f(e), x〉) (for e, x, s ∈ ω). �

For the closure under the join operation (and for some later applications), we
need the following technical lemma.

Lemma 5.2. Let A0 and A1 be c.e. sets. There exist strictly increasing computable
functions f0, f1 : ω → ω such that, for all e, x ∈ ω,

Φ̂A0⊕A1
e (x) ↓ ⇔ (Φ̂A0

f0(e)
(x) ↓ & Φ̂A1

f1(e)
(x) ↓)(43)

and

Φ̂A0⊕A1
e (x) ↓ ⇒ ∃ i ≤ 1 (Φ̂Aifi(e)(x) = Φ̂A0⊕A1

e (x)).(44)

Proof. Given computable enumerations {Ai,s}s∈ω of Ai (i ≤ 1), for each i ≤ 1 and
e ≥ 0 define the functional Ψi,e by letting, for any set Z and any number x,

ΨZ
i,e(x) ↓ ⇔ ∃s (Φ̂A0⊕A1

e (x)[s] ↓ & Ai,s � ϕ̂e(x) + 1 = Z � ϕ̂e(x) + 1)

and by setting

ΨZ
i,e(x) = Φ̂A0⊕A1

e (x)[s]
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for the least such s if ΨZ
i,e(x) is defined. Note that the use of ΨZ

i,e(x) is bounded
by ϕ̂e(x), and, for i ≤ 1, {Ψi,e}e∈ω is a uniformly computable sequence of wtt-
functionals. So, by clause 1. of Lemma 3.3, there is a strictly increasing computable
function fi such that Ψi,e = Φ̂fi(e). We claim that f0 and f1 are as desired.

Note that Φ̂A0⊕A1
e (x) ↓ trivially implies that Φ̂A0

f0(e)
(x) and Φ̂A1

f1(e)
(x) are defined.

So, assuming that Φ̂A0

f0(e)
(x) and Φ̂A1

f1(e)
(x) are defined, it suffices to show that

Φ̂Aifi(e)(x) = Φ̂A0⊕A1
e (x) for some i ≤ 1. By assumption, for i ≤ 1 fix the least stage si

such that Φ̂A0⊕A1
e (x)[si] ↓ and Ai,si � ϕ̂e(x)+1 = Ai � ϕ̂e(x)+1 holds. Then, for s =

max{s0, s1}, it follows by the use-principle that Φ̂A0⊕A1
e (x) = Φ̂A0⊕A1

e (x)[s]. So, for

the least i ≤ 1 such that s = si, we may deduce that Φ̂Aifi(e)(x) = Φ̂A0⊕A1
e (x). �

By applying Lemma 5.2, now we can prove that EUwttAC is closed under join.

Lemma 5.3. Let A0 and A1 be c.e. e.u.wtt-a.c. sets. Then A0⊕A1 is e.u.wtt-a.c.,
too.

Proof. Fix computable functions gi, ki and hi such that Ai is e.u.wtt-a.c. via gi, ki
and hi (i ≤ 1). By Lemma 5.2, fix computable functions fi : ω → ω (i ≤ 1) such
that (43) holds. Define the functions g, k and h by letting

g(〈e, x〉, s) = g0(〈f0(e), x〉, s) · g1(〈f1(e), x〉, s),
k(〈e, x〉, s) = k0(〈f0(e), x〉, s) · k1(〈f1(e), x〉, s), and

h(〈e, x〉) = h0(〈f0(e), x〉) + h1(〈f1(e), x〉)

(for all e, x, s ∈ ω). We claim that A0⊕A1 is e.u.wtt-a.c. via g, k and h. Obviously,
the functions g, k and h are computable. So it suffices to show (6) – (9) for A = A0⊕
A1. Now, by the choice of gi and ki, (6) is immediate by (43) and (7) is immediate.
For a proof of (8), note that, for any e, x, s ∈ ω, g(〈e, x〉, s+1) 6= g(〈e, x〉, s) implies
that g0(〈f0(e), x〉, s+ 1) 6= g0(〈f0(e), x〉, s) or g1(〈f1(e), x〉, s+ 1) 6= g1(〈f1(e), x〉, s)
and k(〈e, x〉, s) = 1 implies k0(〈f0(e), x〉, s) = k1(〈f1(e), x〉, s) = 1. So, by the
choice of gi, ki and hi, k(〈e, x〉, s) = 1 implies

|{t ≥ s : g(〈e, x〉, t+ 1) 6= g(〈e, x〉, t)}|

≤ |{t ≥ s : g0(〈f0(e), x〉, t+ 1) 6= g0(〈f0(e), x〉, t)}|+
|{t ≥ s : g1(〈f1(e), x〉, t+ 1) 6= g1(〈f1(e), x〉, t)}|

≤ h0(〈f0(e), x〉) + h1(〈f1(e), x〉)

= h(〈e, x〉).

Finally, for a proof of (9), fix e such that Φ̂A0⊕A1
e is total. Then, by (43), Φ̂A0

f0(e)

and Φ̂A1

f1(e)
are total, too. So, by the choice of k0 and k1, there is a number x0 such

that lims→∞ k0(〈f0(e), x〉, s) = 1 and lims→∞ k1(〈f1(e), x〉, s) = 1 for all x ≥ x0.
By the definition of k, this implies that lims→∞ k(〈e, x〉, s) = 1 x ≥ x0. �

The above closure properties of EUwttAC show that the wtt-degrees of the
c.e. e.u.wtt-a.c. sets are an ideal in the upper semilattice of the c.e. wtt-degrees.
Moreover, by the Characterization Theorem, this ideal intersects all high c.e. Turing
degrees.
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Theorem 5.4. The class EUwttACwtt of the wtt-degrees of c.e. e.u.wtt-a.c. sets
is an ideal in the upper semilattice of the c.e. wtt-degrees. Moreover, for any high
c.e. Turing degree a, there is a c.e. set A ∈ a such that degwtt(A) ∈ EUwttACwtt.

Proof. The first part of the theorem is immediate by Lemmas 5.1 and 5.3. For
the second part of the theorem, note that, by Theorem 4.2, any maximal set is
e.u.wtt-a.c. So the claim follows by Martin’s Theorem [Mar66] which asserts that
any high c.e. Turing degree contains a maximal set. �

In the remainder of the paper we relate the eventually uniformly wtt-array com-
putable sets to the wtt-superlow sets and to the array computable sets. As we will
show this provides strict lower bounds and upper bounds, respectively. We start
with the wtt-superlow sets which are of great interest in themselves.

6. Wtt-Superlow Sets

In this section, we will study notions of lowness for the bounded jump, i.e., we
will look at the wtt-superlow (i.e., bounded low) sets introduced in the introduction
already. After showing that wtt-superlow sets are eventually uniformly wtt-array
computable (Subsection 6.1), we have a closer look at this class of sets. So we
observe that the wtt-degrees of the c.e. wtt-superlow sets form an ideal, and we give
an analog of the equivalence of superlowness and jump traceability by introducing
a corresponding notion of wtt-jump traceability (Subsection 6.2). We use this
equivalence in order to give a strict hierarchy of the wtt-superlow sets depending on
the order of the mind changes needed in computable approximations of the bounded
jump (Subsection 6.3). Finally, we look at the lowest level of this hierarchy, the
class of the strongly wtt-superlow sets, and we show that there are Turing complete
sets in this class (Subsection 6.4).

6.1. Wtt-superlow sets are eventually uniformly wtt-array computable.
We recall the following definition from the introduction.

Definition 6.1. A (not necessarily c.e.) set A is wtt-superlow if A† ≤wtt ∅′.

In order to show that any (not necessarily c.e.) wtt-superlow set is eventually
uniformly wtt-array computable, we characterize the wtt-superlow sets in terms of
approximability of their bounded jumps. We first recall the relevant notions needed.
A total function f : ω → ω is called h-computably approximable via g or h-c.a. via
g for short, if g : ω2 → ω is a computable function and h : ω → ω is a computable
order such that f(x) = lims→∞ g(x, s) and |{s : g(x, s + 1) 6= g(x, s)}| ≤ h(x)
(for any x), i.e., g is a computable approximation of f where the number of mind
changes of g is computably bounded by h; f is called h-computably approximable
(h-c.a.) if f is h-computably approximable (h-c-a.) via some computable function
g : ω2 → ω; and f is ω-computably approximable or ω-c.a. for short if f is h-c.a. for
some computable order h. (Note that if the range of f is bounded, say, f(x) ≤ k for
all x, then we may assume that the approximating function g is also bounded by
k. So if A is an ω-c.a. set and g approximates A in the limit then in the following
we tacitly assume that g is 0-1 valued.)

Lemma 6.2. Let A be any (not necessarily c.e.) set. The following are equivalent.

1. A is wtt-superlow, i.e., A† ≤wtt ∅′.
2. A† ≤tt ∅′.
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3. A† is ω-c.a.
4. There exists a computable order h such that any set B which is bounded-c.e.

in A is h-c.a.

Proof. The equivalence of the first three clauses 1., 2. and 3. is immediate by the
general fact that, for any set B, B ≤wtt ∅′ iff B ≤tt ∅′ iff B is ω-c.a., see, e.g.,
[Odi99, III.8.14] and [DH10, Corollary 2.6.2]. Moreover, the implication “4. ⇒ 3.”
is immediate, too, since A† is bounded-c.e. in A. This leaves the implication “3. ⇒
4.”.

So suppose that A† is ω-c.a. Fix a computable function g : ω2 → {0, 1} and

a computable order ĥ such that A†(x) = lims→∞ g(x, s) and |{s : g(x, s + 1) 6=
g(x, s)}| ≤ ĥ(x) hold for all x. We claim that any bounded A-c.e. set is h-c.a. for

the order h(x) = ĥ(〈x, x〉). So let B be a bounded A-c.e. set. Fix e ∈ ω such

that B = dom(Φ̂Ae ). Then x ∈ B iff 〈e, x〉 ∈ A†. Define the computable function
g̃ : ω2 → {0, 1} by letting

g̃(x, s) =

{
B(x) if x < e,

g(〈e, x〉, s) otherwise.

By definition, B(x) = lims→∞ g̃(x, s) holds for all x. So it suffices to show that the
number of mind changes of g̃(x, ·) is bounded by h(x) for any x. The latter clearly
holds if x < e. On the other hand, for x ≥ e we may argue that

|{s : g̃(x, s+ 1) 6= g̃(x, s)}| = |{s : g(〈e, x〉, s+ 1) 6= g(〈e, x〉, s)}| ≤ ĥ(〈e, x〉) ≤ h(x),

where the latter inequality holds since ĥ is a computable order. �

Corollary 6.3. Any (not necessarily c.e.) wtt-superlow set is eventually uniformly
wtt-array computable.

Proof. Assume that A is wtt-superlow. Then, by Lemma 6.2, A† is ω-c.a. So we
may fix a computable order h and a computable function g such that A† is h-c.a.
via g. It follows that A is eventually uniformly wtt-array computable via g, k and
h where we may let k be the constant function k(x, s) = 1. �

From Lemma 6.2 we can further deduce that the class of the wtt-superlow sets is
closed downwards under wtt-reducibility and that the class of the c.e. wtt-superlow
sets is closed under join. So the class of the wtt-superlow c.e. wtt-degrees is an
ideal in EUwttAC.

Corollary 6.4. (a) Let A and B be any (not necessarily c.e.) sets such that
A ≤wtt B and B is wtt-superlow. Then A is wtt-superlow, too.

(b) Let A0 and A1 be wtt-superlow c.e. sets. Then A0⊕A1 is wtt-superlow, too.

Proof. (a). By wtt-superlowness of B, B† ≤wtt ∅′ while, by A ≤wtt B and by part
5. of Lemma 3.4, A† ≤wtt B†. Hence A† ≤wtt ∅′. By Lemma 6.2 this implies that
A is wtt-superlow.

(b). By Lemma 5.2 fix computable functions fi (i ≤ 1) satisfying (43). Then,
for all e, x ∈ ω, we have

〈e, x〉 ∈ (A0 ⊕A1)† ⇔ ∀i ≤ 1 (2〈fi(e), x〉+ i ∈ A†0 ⊕A
†
1).

Hence, (A0 ⊕A1)† ≤tt A†0 ⊕A
†
1 ≤tt ∅′. �
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6.2. Wtt-superlowness and wtt-jump traceability. For computably enumer-
able sets the equivalent characterizations of wtt-superlowness given in Lemma 6.2
can be expanded. In particular, a computably enumerable set A is wtt-superlow iff
A is wtt-jump traceable where the latter is defined as follows.

Definition 6.5. A set A is h-wtt-jump traceable via {Ve}e∈ω if h is a computable
order and {Ve}e∈ω is a uniformly c.e. sequence of finite sets such that, for all

e ≥ 0, |Ve| ≤ h(e) and ĴA(e) ↓ implies ĴA(e) ∈ Ve; A is h-wtt-jump traceable if
there exists a uniformly c.e. sequence {Ve}e∈ω such that A is h-wtt-jump traceable
via {Ve}e∈ω; and A is wtt-jump traceable if there exists a computable order h such
that A is h-wtt-jump traceable. If A h-wtt-jump traceable via {Ve}e∈ω then we say

that {Ve}e∈ω is an h-trace for ĴA.

Theorem 6.6. For a c.e. set A, A is wtt-superlow if and only if A is wtt-jump
traceable.

By Lemma 6.2, Theorem 6.6 is immediate by the following two lemmas. In these
lemmas, in addition we analyze how the relevant orders are affected if we go from
one notion to the other. (This analysis will be used below in the proof of Lemma
6.12).

Lemma 6.7. Let A be a c.e. set, let h be a computable order, and suppose that A†

is h-c.a. Then A is ĥ-wtt-jump traceable for the computable order ĥ(x) = dh(〈x,x〉)2 e

Proof. We adapt some of the techniques from [Nie06, Theorem 4.1] where it is
shown that the c.e. superlow sets coincide with the c.e. jump traceable sets.

Fix a computable function g : ω2 → {0, 1} such that A† is h-c.a. via g and fix
a computable enumeration {As}s∈ω of A. We show that there exists a number
d ∈ ω and a uniformly c.e. sequence {Ve}e∈ω such that A is h′-wtt-jump traceable

via {Ve}e∈ω for the computable order h′(x) = dh(〈d,x〉)2 e+ 1. Then, obviously, A is

ĥ-wtt-jump traceable via {V̂e}e∈ω via the uniformly c.e. sequence

V̂e =


∅ if e < d and ĴA(e) ↑
{ĴA(e)} if e < d and ĴA(e) ↓
Ve otherwise.

Now, along with {Ve}e∈ω, we define an auxiliary wtt-functional Ψ in stages s
where, by the Recursion Theorem, we may assume that in advance we know an
index d ∈ ω such that Ψ = Φ̂d holds (the intuition behind ΨA(x) is that its

computation is a delayed version of the computation of ĴA(x)). In more detail, we

define a uniformly computable sequence of wtt-functionals {Ψ̃e}e∈ω (intuitively, for
any e ∈ ω, we have a version for the definition of Ψ, where e is a guess for an index
of Ψ). Then, in the construction, we make Ψ̃A

e (x) defined (undefined) at a certain
stage s + 1 only if g(〈e, x〉 , s) correctly approximates the status of definedness of

Ψ̃A
e (x)[s]. Then, by the Recursion Theorem, there exists a number d such that

Ψ̃d = Φ̂d. So Ψ = Ψ̃d is as desired. Now the definition of Ve and ΨA(e) for given
e ∈ ω is as follows.

Stage 0. Let Ve,0 = ∅ and ΨA(e)[0] ↑.
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Stage s + 1. Let Ve,s and ΨA(e)[s] be given. If ϕ̂e(e)[s] ↑ or if As+1 �
ϕ̂e(e) + 1 6= As � ϕ̂e(e) + 1 holds then let ΨA(e)[s+ 1] ↑ and Ve,s+1 = Ve,s.
Otherwise, distinguish between the following cases.

(i) If ΨA(e)[s] ↑, ĴA(e)[s] ↓ and g(〈d, e〉 , s) = 0 then let ΨA(e)[s + 1] ↓=
ĴA(e)[s] with use ϕ̂e(e) and let Ve,s+1 = Ve,s.

(ii) If ΨA(e)[s] ↓ and g(〈d, e〉 , s) = 1 then let ΨA(e)[s+ 1] = ΨA(e)[s] and
Ve,s+1 = Ve,s ∪ {ΨA(e)[s]}.

If neither of the previous cases applies then let ΨA(e)[s+1] = ΨA(e)[s] and
Ve,s+1 = Ve,s.

By the effectivity of the construction, {Ve}e∈ω is uniformly c.e. and Ψ is a wtt-
functional. We claim that {Ve}e∈ω and the number d obtained from the Recursion

Theorem are as desired. We first prove that {Ve}e∈ω is a trace for ĴA. So let e ∈ ω
be given such that ĴA(e) ↓. Then we may fix the least stage s such that ĴA(e)[s] ↓
and A � ϕ̂e(e) + 1 = As � ϕ̂e(e) + 1. Since lims→∞ g(〈d, e〉 , s) = dom(ΨA)(e),
it follows that there exists a stage s0 such that (i) applies at stage s0 + 1. So

ΨA(e)[s0+1] ↓= ĴA(e) holds by construction; hence, for the least stage s1 > s0 such

that (ii) applies at stage s1 + 1, it follows that ĴA(e) ∈ Ve,s1+1; hence, ĴA(e) ∈ Ve.
It remains to show that {Ve}e∈ω is an h′-trace. For that, we observe that,

by construction, a number x may be enumerated into Ve at stage s + 1 only if
x = ΨA(e)[s] ↓. So if s0 < s1 are stages such that ΨA(e)[s0] ↓6= ΨA(e)[s1] ↓ and
such that ΨA(e)[si] enter Ve at stage si + 1 (i ≤ 1) then, by construction, there
must be a stage s such that s ∈ (s0, s1) and such that ΨA(e)[s + 1] ↑. Thus, by
(i), there exists a stage t ∈ (s, s1) such that ΨA(e)[t + 1] ↓. So, by (ii), we can
argue that each new element that enters Ve corresponds to a change of g(〈d, e〉 , ·)
from 1 to 0 and back to 1. Since there are at most dh(〈d,e〉)2 e many such stages, this
completes the proof. �

Lemma 6.8. Let A be a c.e. set. There exists a strictly increasing computable
function f : ω → ω such that, for any computable order h such that A is h-wtt-
jump traceable, A† is h̃-c.a. via the computable order h̃(x) = 2h(f(x)) + 1.

Proof. Given a computable enumeration {As}s∈ω of A, consider the wtt-functional
Ψ such that, for any oracle X and any input e, x ∈ ω, we have

ΨX(〈e, x〉) = µs(Φ̂Ae (x)[s] ↓ & X � ϕ̂e(x) + 1 = As � ϕ̂e(x) + 1)(45)

and, by 3. of Lemma 3.4, let f : ω → ω be a computable function such that
ΨX(n) = ĴX(f(n)) holds for all oracles X and all numbers n.

Now fix a computable order h and suppose that A is h-wtt-jump traceable. By
the latter, fix a uniformly c.e. sequence {Ve}e∈ω which is an h-trace for ĴA. Then,
for all n, e, x, s ∈ ω, let

t(n, s) = max(Vf(n),s), and(46)

g(〈e, x〉 , s) =


1 if Φ̂Ae (x)[t(〈e, x〉 , s)] ↓ and

As � ϕ̂e(x) + 1 = At(〈e,x〉,s) � ϕ̂e(x) + 1,

0 otherwise.

(47)
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We claim that A† is h̃-c.a. via g for the computable order h̃ as given by the lemma.
First of all, we show that lims→∞ g(〈e, x〉 , s) = A†(〈e, x〉) holds for all e, x ∈ ω.

First, suppose that Φ̂Ae (x) ↑. Then Φ̂Ae (x)[s] ↑ holds for almost all stages s; hence,

lims→∞ g(〈e, x〉 , s) = 0, as desired. Otherwise, ΨA(〈e, x〉) ↓; hence, ĴA(f(〈e, x〉)) ≤
t(〈e, x〉 , s) holds for almost all s by the definition of f and by (47) which in turn
implies that lims→∞ g(〈e, x〉 , s) = 1, as desired.

In order to show that the number of mind changes of g(〈e, x〉 , ·) is bounded
by 2h(f(〈e, x〉)) + 1, by the fact that g(〈e, x〉 , 0) = 0, it suffices to show that the
number of stages s0 < s1 such that g(〈e, x〉 , s0) = 1, g(〈e, x〉 , s0 + 1) = 0 and such
that s1 is the least stage greater than s0 such that g(〈e, x〉 , s1) = 1 is bounded by
h(f(〈e, x〉)). For the latter, let e, x ∈ ω be given and suppose that s0 < s1 are as
above. We claim that t(〈e, x〉 , s0) < t(〈e, x〉 , s1) holds. Otherwise, since t(〈e, x〉 , s)
is nondecreasing in s and by (47), it follows that

Φ̂Ae (x)[t(〈e, x〉 , s0)] ↓

and

As1 � ϕ̂e(x) + 1 = At(〈e,x〉,s0) � ϕ̂e(x) + 1.

Hence, g(〈e, x〉 , s) = 1 holds for all s ∈ [s0, s1), contrary to choice of stage s0. So
for any such two stages s0 < s1 there exists a number which is enumerated into
Vf〈e,x〉. As {Ve}e∈ω is an h-trace, this completes the proof. �

6.3. A hierarchy of wtt-superlow sets. We conclude the section by looking at
strong variants of wtt-superlowness and by introducing a hierarchy of wtt-superlow
sets. By Lemma 6.2 a set A is wtt-superlow if there is a computable order h such
that A† is h-c.a. So we may ask whether the function h depends on A or not. In
this subsection we show that in general this is the case. In fact, we show that, for
any computable order h1, there is a (faster growing) computable order h2 such that
there is a c.e. set A such that the bounded jump A† of A is h2-c.a. but not h1-c.a.,
and there is a (slower growing) computable order h0 such that there is a c.e. set B
such that the bounded jump B† of B is h1-c.a. but not h0-c.a. On the other hand,
in the next subsection we will show that there are noncomputable – in fact, Turing
complete – c.e. sets A such that A† is h-c.a. for all computable orders.

The key to the hierarchy results in this subsection is the following technical
lemma.

Lemma 6.9. Let h, ĥ, H and Ĥ be computable orders such that, for n ≥ 0,

(48) ĥ(n) = h(〈n, n〉) and H(n) = 2Ĥ(n) + 1

and such that there are a computable order neg(n) and a strong array {Fn}n∈ω of
mutually disjoint finite sets satisfying

(49) ∀ n (|Fn| = neg(n) + 1)

and

(50) ∀ m (
∑

{n:neg(n)≤m}

(ĥ(maxFn) + 1) ≤ Ĥ(m)).

Then there is a c.e. set A such that A† is H-c.a. but not h-c.a.

Proof. By a finite injury argument, we give a computable enumeration {As}s∈ω of
a c.e. set A with the required properties.
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We make A† H-c.a. via the canonical computable approximation g : ω2 → {0, 1}
of A† induced by {As}s∈ω where (for e, x ≥ 0)

(51) g(〈e, x〉, s) = 1 ⇔ Φ̂Ae (x)[s] ↓ .
For this sake it suffices to ensure that

mg(〈e, x〉) ≤ H(〈e, x〉)
for all e, x ≥ 0 where

mg(〈e, x〉) = |{s : g(〈e, x〉, s+ 1) 6= g(〈e, x〉, s)}|
is the number of mind changes of g on 〈e, x〉. In order to achieve this, it suffices to
meet the (negative) requirements

N〈e,x〉 : ϕ̂e(x) ↓ ⇒ |(A \As〈e,x〉) � ϕ̂e(x)| ≤ Ĥ(〈e, x〉)

for e, x ≥ 0 where s〈e,x〉 is the least stage s such that ϕ̂e,s(x) ↓. Namely, for any
stage s such that g(〈e, x〉, s) = 1 and g(〈e, x〉, s+ 1) = 0, the definition of g implies
that s ≥ s〈e,x〉 and As+1 � ϕ̂e(x) 6= As � ϕ̂e(x). Since g(〈e, x〉, s) = 1 for any other
stage s such that g(〈e, x〉, s+ 1) 6= g(〈e, x〉, s), it follows that

mg(〈e, x〉) ≤ 2 · |{s : g(〈e, x〉, s) = 1 & g(〈e, x〉, s+ 1) = 0}|+ 1

≤ 2 · |{s ≥ s〈e,x〉 : As+1 � ϕ̂e(x) 6= As � ϕ̂e(x)|}|+ 1

≤ 2 · |(A \As〈e,x〉) � ϕ̂e(x)|+ 1

≤ 2 · Ĥ(〈e, x〉) + 1

= H(〈e, x〉)
where the last inequality holds by N〈e,x〉.

In order to guarantee that A† is not h-c.a., we define an auxiliary wtt-functional
Ψ together with a corresponding partial computable use bound ψ such that

(52) dom(Ψ) is not ĥ-c.a.

The proof that this guarantees that A† is not h-c.a. is indirect. For a contradiction
assume that A† is h-c.a. Fix ĝ such that A† is h-c.a. via ĝ and fix e such that
Ψ = Φ̂e. Then, for x ≥ 0, λs.ĝ(〈e, x〉, s) converges to dom(Ψ)(x) with ≤ h(〈e, x〉)
mind changes. Since h(〈e, x〉) ≤ ĥ(x) for all numbers x ≥ e, this implies that

dom(Ψ) is ĥ-c.a. contrary to (52).
Since, for any order h, any h-c.a. set B is h-c.a. via a primitive recursive function,

condition (52) can be broken up into the (positive) requirements

Pn : dom(Ψ) is not ĥ-c.a. via gn.

(n ≥ 0) where {gn}n∈ω is a computable numbering of the primitive recursive func-
tions of type ω2 → {0, 1}.

The basic strategy for meeting requirement Pn is as follows. We pick a number
y, called (Pn-)follower, such that Pn may define Ψ and ψ on y. Then we ensure
that the follower y witnesses that Pn is met by guaranteeing

(53) dom(ΨA)(y) = lim
s→∞

gn(y, s) ⇒ |{s : gn(y, s+ 1) 6= gn(y, s)}| > ĥ(y).
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For this sake we pick ĥ(y) + 1 numbers z0 < z1 < · · · < zĥ(y), called (Pn-)attackers,

which are not used as attackers by other strategies, let ψ(y) = zĥ(y) + 1 (note that

this allows us to make a convergent computation ΨA(y)[s] ↓ divergent at stage
s+ 1 by enumerating one of the attackers into A at this stage), and define Ψ on y
as follows (where initially ΨA(y)[0] ↑). For any stage s such that ΨA(y)[s] ↑ and
gn(y, s) = 0 we let ΨA(y)[s + 1] ↓ (note that this does not require to change the
oracle As) and for any stage s such that ΨA(y)[s] ↓, gn(y, s) = 1 and there is at
least one attacker zi left which is not yet in A, we put the least such zi into A
at stage s + 1 and let ΨA(y)[s + 1] ↑. Obviously, if the hypothesis of (53) holds,

this guarantees that there are at least ĥ(y) + 1 stages s such that gn(y, s) = 1 and
gn(y, s + 1) = 0. So, in particular, (53) holds. Moreover, the functional Ψ defined
in this way is a wtt-functional with partial computable bound ψ on the use.

Now, in order to make the Pn-strategies compatible with the goal of meeting the
negative requirements N〈e,x〉, we have to adjust the basic strategy. In particular,
it may happen that the Pn-follower may be cancelled by a negative requirement,
and the basic strategy for meeting Pn has to be started all over again with a new
follower (and new attackers).

We say that Pn injures N〈e,x〉 via follower y and corresponding attacker z at stage
s+ 1 if ϕ̂e,s(x) ↓ (i.e., s〈e,x〉 ≤ s), z < ϕ̂e(x) and Pn enumerates z into A at stage
s+1. So, since attackers are the only numbers which may enter A, in order to ensure
that N〈e,x〉 is met it suffices to guarantee that there are at most Ĥ(〈e, x〉) stages
at which the requirement N〈e,x〉 is injured. In order to achieve this, first we ensure
that if a Pn-follower y is appointed at stage s+ 1 then the corresponding attackers
zi are chosen to be ≥ s + 1 (in the actual construction we achieve this by letting
zi = 〈y, s + 1, i〉 which, in addition, ensures that the sets of attackers associated
with different followers are disjoint) whence, for any requirement N〈e,x〉 such that
ϕ̂e,s(x) ↓, Pn will not injure N〈e,x〉 after stage s since ϕ̂e(x) ≤ s〈e,x〉 ≤ s ≤ zi for
any attacker zi associated with y (or with any Pn-follower appointed later). Next
we assign priorities to the requirements, and we ensure that a negative requirement
N〈e,x〉 cannot be injured by any lower priority positive requirement Pn as follows.
If ϕ̂e(x) becomes defined at stage s (i.e., if s = s〈e,x〉) then N〈e,x〉 initializes the
lower priority positive requirements Pn at stage s by cancelling the current follower
y of Pn (if any) and the corresponding attackers. So the strategy for meeting Pn
has to be restarted with a new follower and new attackers after stage s, thereby
guaranteeing that the new attackers are too large to injure N〈e,x〉.

Note that Pn can be injured by any higher priority negative requirement at most
once. So in order to guarantee that there will be a follower y of Pn left which is
never cancelled (whence the basic strategy using follower y will succeed to meet
Pn) it suffices to assign a reservoir of followers to Pn which is greater than the
number of the negative requriements that have higher priority than Pn.

Here we achieve this by letting Nm have higher priority than Pn iff m < neg(n)
(and by letting Pn have higher priority than Nm otherwise) and by letting the finite
set Fn be the reservoir of Pn-followers. Then there are neg(n) negative requirements
of higher priority than Pn and, by (49) there are neg(n) + 1 potential Pn-followers.
So the positive requirements Pn are met.

It remains to show that the negative requirements N〈e,x〉 are met, too. By ini-
tialization, N〈e,x〉 can be injured only by the higher priority positive requirements,
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i.e., by the requirements Pn where neg(n) ≤ 〈e, x〉. Moreover, for any such re-
quirement Pn, N〈e,x〉 can be injured via one Pn-follower only. Namely, if N〈e,x〉
becomes injured by Pn via y at stage s + 1 then s〈e,x〉 ≤ s. So the attackers of
any Pn-followers which may be appointed later are greater than s〈e,x〉 and hence
cannot injure N〈e,x〉. So N〈e,x〉 can be injured by a single higher priority positive

requirement Pn at most ĥ(maxFn)+1 times, since any Pn-follower y is picked from

the reservoir Fn and since y is associated with ĥ(y) + 1 attackers.
So, if we let Pn > Nm denote that Pn has higher priority than Nm, then, for

any 〈e, x〉 such that ϕ̂e(x) ↓,

|(A \As〈e,x〉) � ϕ̂e(x)| ≤
∑
{n:Pn>N〈e,x〉}(ĥ(maxFn) + 1)

=
∑
{n:neg(n)≤〈e,x〉}(ĥ(maxFn) + 1)

≤ Ĥ(〈e, x〉)

where the last inequality holds by assumption (50). So the negative requirements
N〈e,x〉 are met, too.

Having outlined the construction, we conclude the proof by giving the formal
construction. We start with some additional notation. Let yn[s] be the follower of

Pn at stage s (if any); if yn[s] ↓ let zn,i[s] (i ≤ ĥ(yn[s])) be the attackers associated
with yn[s]; let yn0 < yn1 < · · · < ynneg(n) be the elements of Fn in order of magnitude;

call a negative requirement critical at stage s if ϕ̂e,s(x) ↓ (i.e., s〈e,x〉 ≤ s); and let

l(n, s) = |{〈e, x〉 < neg(n) : ϕ̂e,s(x) ↓}| = |{〈e, x〉 < neg(n) : s〈e,x〉 ↓≤ s}|

be the number of the negative requirements of higher priority than Pn which are
critical at stage s. (Note that λs.l(n, s) is nondecreasing in s, l(n, 0) = 0 and
l(n, s) ≤ neg(n) whence ynl(n,s) is a well-defined element of Fn.) In the construction

all parameters persist unless explicitly stated otherwise.
Stage 0 is vacuous, i.e., A0 = ∅, Ψ and ψ are nowhere defined, and no followers

and attackers are defined.

Stage s+ 1. Requirement Pn requires attention if
(a) either n = s, or n < s and l(n, s) < l(n, s+ 1) or
(b) n < s and l(n, s+ 1) = l(n, s) and

(b1) ΨA(yn[s])[s] ↑ & gn(yn[s], s) = 0 or
(b2) ΨA(yn[s])[s] ↓ & gn(yn[s], s) = 1 and there is an attacker zn,i[s]

which is not in As.

For any requirement Pn which requires attention act as follows according
to the case via which the requirement requires attention.
(a) If n < s and l(n, s) < l(n, s+ 1) declare that Pn is initialized at stage

s + 1 and cancel the follower and attackers of Pn existing at stage
s. In any case appoint yn[s + 1] = ynl(n,s+1) as (new) Pn-follower,

assign zn,i[s + 1] = 〈yn[s + 1], s + 1, i〉 as the corresponding attackers

(i ≤ ĥ(yn[s+ 1])), and let ψ(yn[s+ 1]) = zn,ĥ(yn[s+1])[s+ 1] + 1.

(b) Distinguish the following subcases. If (b1) holds then let ΨA(yn[s])[s+
1] ↓. If (b2) holds then let ΨA(yn[s])[s+ 1] ↑ and, for the least i such
that zn,i[s] 6∈ As, enumerate zn,i[s] into A.

This completes the construction. The correctness of the construction follows
from the preceding discussion. A formal verification is left to the reader. �
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Theorem 6.10. Let h1 be any computable order. There are computable orders h0
and h2 such that the following hold.

(a) There is a c.e. set A such that A† is h2-c.a. but not h1-c.a.
(b) There is a c.e. set A such that A† is h1-c.a. but not h0-c.a.

Proof. (a). Let h, ĥ, H, Ĥ be the computable orders defined by h = h1, ĥ(n) =
〈n, n〉,

(54) Ĥ(n) = n · (ĥ(〈n, n〉) + 1),

and H(n) = 2Ĥ(n) + 1 (n ≥ 0), let neg be the computable order neg(n) = n + 1,
and let {Fn}n∈ω be the strong array of mutually disjoint finite sets given by

Fn = |{〈n, k〉 : k ≤ n}|.

We claim that (a) holds for h2 = H. By Lemma 6.9 it suffices to show that (49)
and (50) hold. The former is immediate. The latter holds by∑

{n:neg(n)≤m}(ĥ(maxFn) + 1) =
∑
{n:n+1≤m}(ĥ(〈n, n〉) + 1)

≤ m · (ĥ(〈m,m〉) + 1)

= Ĥ(m)

where the first equality holds by the definition of neg(n) and Fn while the last

equality holds by the definition of Ĥ.

(b). Note that, for any computable orders h̃ and
˜̃
h such that h̃ dominates

˜̃
h, any

˜̃
h-c.a. set is h̃-c.a. Moreover, for any computable order h̃ there is a computable order
Ĥ such that h̃ dominates the computable order H(n) = 2Ĥ(n) + 1. So w.l.o.g. we

may assume that there is a computable order Ĥ such that h1 is the corresponding
computable order H, i.e., h1(n) = H(n) = 2Ĥ(n)+1 for n ≥ 0. It suffices to define

computable orders h, ĥ, neg and a strong array {Fn}n∈ω of disjoint finite sets such

that h, ĥ, H, Ĥ, neg and {Fn}n∈ω satisfy the hypotheses of Lemma 6.9. Then (b)
holds for h0 = h.

Let neg be a strictly increasing computable function such that Ĥ(neg(n)) ≥
s(n+ 1) where s(n) = 0 + 1 + · · ·+n, and let {Fn}n∈ω be the computable partition
of ω into intervals such that maxFn + 1 = minFn+1 and

|Fn| = neg(n) + 1.

Finally, let h be any computable order such that

h(〈n, n〉) = m iff n ∈ Fm

and let ĥ(n) = h(〈n, n〉).

It remains to show that (49) and (50) hold. The former is immediate by the
definition of Fn. For a proof of (50) fix m. W.l.o.g. we may assume that there is a
number n such that neg(n) ≤ m (otherwise, (50) trivially holds since

∑
∅(. . . ) = 0).
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So, since neg is an order, there is a greatest such n, say, n0. It follows that∑
{n:neg(n)≤m}(ĥ(maxFn) + 1) =

∑
{n:neg(n)≤m}(n+ 1)

(by the definition of h and ĥ)
≤

∑
{n:n≤n0}(n+ 1)

(by the maximality of n0)
= s(n0 + 1)

≤ Ĥ(neg(n0))
(by the definition of neg)

≤ Ĥ(m)
(by neg(n0) ≤ m)

which completes the proof of (50) and the proof of the theorem. �

6.4. Strongly wtt-superlow sets. We now show that there is a noncomputable
c.e. set – in fact, a Turing complete set – A such that A† is h-c.a. for any order h.

Definition 6.11. A set A is strongly wtt-superlow if A† is h-computably approx-
imable for any computable order h; and A is strongly wtt-jump traceable if A is
h-wtt-jump traceable for any order h such that h(0) > 0.

We first observe that the equivalence of wtt-superlowness and wtt-jump trace-
ability for c.e. sets extends to strong wtt-superlowness and strong wtt-jump trace-
ability.

Lemma 6.12. Let A be a c.e. set. A is strongly wtt-superlow if and only if A is
strongly wtt-jump traceable.

Proof. First assume that A is strongly wtt-superlow. Then, given a computable
order h such that h(0) > 0, we have to show that A is h-wtt-jump traceable. Let

h′ be a computable order such that dh
′(〈x,x〉)

2 e ≤ h(x) for all x ≥ 0. Then, by

assumption, A†, is h′-c.a. But, by Lemma 6.7, this implies that A is h-wtt-jump
traceable.

Now assume that A is strongly wtt-jump traceable. Then, given a computable
order h, we have to show that A† is h-c.a. Since any set which is h-c.a. is h′-c.a.
for any finite variant h′ of h, w.l.o.g. we may assume that h(0) ≥ 3. Fix a strictly
increasing computable function f as in Lemma 6.8 and let h′ be a computable order
such that h′(0) = 1 and 2h′(f(x)) + 1 ≤ h(x) for x ≥ 0 (note that, by h(0) ≥ 3
such h′ exists). Then, by assumption, A is h′-wtt-jump traceable. But, by Lemma
6.8, this implies that A† is h-c.a. �

Theorem 6.13. There exists a Turing complete set A which is strongly wtt-
superlow.

Proof. We give a computable enumeration {As}s∈ω of a c.e. set A with the required
properties. In order to make A Turing complete we use marker permitting. Fix
a Turing complete set K, let k : ω → ω be a computable one-to-one function
enumerating K, and let Ks = {k(t) : t < s}. We inductively define the computable
marker function γ : ω2 → ω by letting

γ(x, 0) = 〈x, 0〉

γ(x, s+ 1) =

{
γ(x, s) if x < xs,

〈x, s+ 1〉 otherwise,

(55)
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where the number xs is determined at stage s + 1 of the construction. Moreover,
we let

(56) As = {γ(xt, t) : t < s}
(for s ≥ 0). Note that γ(x, s) is strictly increasing in x and nondecreasing in s.
Moreover, if γ is moved on x at stage s+ 1 then γ(x, s) < γ(x, s+ 1), γ(x, s+ 1) ≥
s+1, and γ(x, s+1) 6= γ(y, t) for all numbers y and all stages t ≤ s. It follows that
γ(x, s) 6∈ As for all numbers x and stages s. So the marker γ(xs, s) is enumerated
into A at stage s + 1, and the markers γ(xs, s) (s ≥ 0) are the only numbers
enumerated into A. Now in order to ensure that K is Turing reducible to A it
suffices to choose the numbers xs such that

(57) ∀ s (xs ≤ k(s))

and

(58) ∀ x ({s : xs ≤ x} is finite).

Namely, the latter ensures that, on any x, the marker γ reaches a final position
γ∗(x), i.e., lims→∞ γ(x, s) = γ∗(x) ∈ ω exists. Moreover, γ(x) reaches its final
position at the least stage s such that x < xt for all t ≥ s, i.e., at the least
stage s such that A � γ(x, s) + 1 = As � γ(x, s) + 1. So γ∗ ≤T A. By (57) this
implies K ≤T A since, for any x, x ∈ K iff x ∈ Ks for the least stage s such that
γ(x, s) = γ∗(x).

Note that, for any stage s,

(59) |(A \As) � s+ 1| ≤ xs + 1.

(Namely, γ(xt, t) is the unique number which enters A at stage t+ 1 and γ(x, t′) ≥
t + 1 for x ≥ xt and t′ ≥ t + 1. So, for t′ > t ≥ s such that γ(xt, t) ≤ s and
γ(xt′ , t

′) ≤ s, we have xt′ < xt ≤ xs.) So, for any number n > 0 and any stage s,
we can ensure that A changes below s+ 1 after stage s at most n times by letting
xs be less than n. This will be crucial for achieving our second goal, namely the
goal to make A strongly wtt-superlow.

By Lemma 6.12, it suffices to make A strongly wtt-jump traceable, i.e., to meet
the requirements

Re : If ϕe is an order such that ϕe(0) > 0 then A is ϕe-wtt-jump traceable.

for e ≥ 0. The strategy for meeting these requirements is based on the following
observation.

Claim 1. Assume that ϕe is an order, ϕe(0) > 0, and

(60) ∀∞ n (ϕ̂n(n) ↓ ⇒ γ∗(ϕe(n)− 1) ≥ ϕ̂n(n)))

holds. Then Re is met.

Proof. Fix n0 such that the inner clause of (60) holds for n ≥ n0. We have to show

that there is a ϕe-trace {Vn}n∈ω for ĴA. Let Vn = ∅ if n < n0 and ĴAn (n) ↑, let

Vn = {ĴAn (n)} if n < n0 and ĴAn (n) ↓, and let

Vn = {ĴAn (n)[s] : s ≥ 0 & γ(ϕe(n)− 1, s) ≥ ϕ̂n,s(n) ↓ & ĴAn (n)[s] ↓}
if n ≥ n0. Obviously, {Vn}n∈ω is a c.e. sequence of finite sets. Moreover, by the

choice of n0, ĴAn (n) ∈ Vn if ĴAn (n) is defined. So it suffices to show that |Vn| ≤ ϕe(n).
Since ϕe(n) ≥ 1 for all n by assumption, this is immediate for n < n0. So fix



THE COMPUTATIONAL POWER OF MAXIMAL SETS 41

n ≥ n0 and, for a contradiction, assume that |Vn| > ϕe(n). Then there are stages
s0 ≤ s1 < · · · < sϕe(n) such that ϕ̂n,s0(n) ↓≤ s0, γ(ϕe(n)− 1, s0) ≥ ϕ̂n(n) and, for

m < ϕe(n), ĴAn (n)[sm+1] ↓6= ĴAn (n)[sm] ↓. By the latter,

(61) |(A \As0) � ϕ̂n(n)| ≥ ϕe(n).

On the other hand, if y is the first number < ϕ̂n(n) which enters A after stage s0,
say, at stage t+ 1 > s0, then

y = γ(xt, t) < ϕ̂n(n) ≤ γ(ϕe(n)− 1, s0) ≤ γ(ϕe(n)− 1, t).

So xt < ϕe(n)− 1. It follows that

|(A \As0) � ϕ̂n(n)| = |(A \At) � ϕ̂n(n)| (by the choice of t)
≤ |(A \At) � t+ 1| (by ϕ̂n(n) ≤ s0 ≤ t+ 1)
≤ xt + 1 (by (59))
< ϕe(n)

contrary to (61). This completes the proof of Claim 1. �

Now, by the above discussion, it suffices to choose the numbers xs so that con-
ditions (57) and (58) as well as, for e ≥ 0 such that ϕe is an order and ϕe(0) > 0,
condition (60) are satisfied. Unless the strategies for satisfying (60) assign a num-
ber < k(s) to xs we let xs = k(s). Obviously this guarantees (57) and, since k is
one-to-one, this is consistent with (58).

The strategy for meeting (60) (if necessary) is as follows. Given e and n such
that ϕe(n) ↓> 0 and ϕ̂n(n) ↓, ϕe,s(n) ↓ and ϕ̂n,s(n) ↓ for almost all stages s
and, in order to guarantee that the inner clause of (60) is satisfied, it suffices that
xs ≤ ϕe(n)− 1 for at least one of these stages s, since this ensures that

γ∗(ϕe(n)− 1) ≥ γ(ϕe(n)− 1, s+ 1) ≥ γ(xs, s+ 1) = 〈xs, s+ 1〉 ≥ s+ 1 > ϕ̂n(n).

(Also note that if e or n is not as above then we do not have to satisfy (60) or the
inner clause is trivially satisfied.) So the following (preliminary) definition of the
numbers xs will guarantee that (57) and (60) are satisfied.

Given s, fix e, n, t such that s = 〈e, n, t〉. If ϕ̂n,s(n) ↓ (hence ϕ̂n(n) ≤ s),
ϕe,s(n) ↓≥ 1, γ(ϕe(n) − 1, s) < ϕ̂n(n), and ϕe(n) − 1 < k(s) then let
xs = ϕe(n)− 1. Otherwise, let xs = k(s).

Unfortunately, however, this definition does not satisfy (58). Still, for fixed e,
such that ϕe is an order and ϕe(0) > 0, the strategy for satisfying (60) will let xs ≤ x
for fixed x only finitely often, since this happens only for n such that ϕe(n) ≤ x+ 1
and, for each such n, this may happen at most once. So the claim follows since,
by ϕe being an order, there are only finitely many n such that ϕe(n) ≤ x + 1.
Moreover, since it suffices to meet the inner clause of (58) for almost all n and
since, for an order ϕe, ϕe(n) > e + 1 for almost all n, we may restrict the action
for ϕe to such numbers n. So, for given x, there are only finitely many e which
may let xs ≤ x. Hence, the above modification will suffice to make the action of
all orders ϕe together compatible with (58). So we have only to ensure that the
action for functions ϕe which are not an order (and for which we do not have to
satisfy (60)) does not affect (58) more seriously than the action for an order. For
this sake, for any e, we let xs = ϕe(n) − 1 only if ϕe(n) > e + 1 and if we can be
sure that we will do so for only finitely many n′ with ϕe(n

′) = ϕe(n). Note that
the latter can be guaranteed, by letting xs = ϕe(n) − 1 only if there is a number
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n′ > n such that ϕe,s(m) is defined and this ϕe is nondecreasing on ω � n′ + 1 and
ϕe(n) < ϕe(n

′). Also note that this may delay the necessary action for an order
ϕe only for finitely many stages. So the following definition of xs (s ≥ 0) will have
the required properties.

Given s, fix e, n, t such that s = 〈e, n, t〉. If
(i) ϕ̂n,s(n) ↓ (hence ϕ̂n(n) ≤ s),
(ii) there is a number n′ > n such that ϕe,s(m) ↓ for m ≤ n′, ϕe is

nondecreasing on ω � n′ + 1, ϕe(0) > 0, and ϕe(n
′) > ϕe(n) > e+ 1,

(iii) γ(ϕe(n)− 1, s) < ϕ̂n(n), and
(iv) ϕe(n)− 1 < k(s)
then let xs = ϕe(n)− 1. Otherwise, let xs = k(s).

We complete the proof by arguing more formally that condition (57), condition
(58), and, for orders ϕe where ϕe(0) > 0, condition (60) are satisfied. Condition
(57) is immediate by the definition of xs.

For a proof of (58) fix x. Let u be minimal such that k(s) > x for s ≥ u. Call s
an (e, n)-stage if s = 〈e, n, t〉 ≥ u for some number t and xs ≤ x, call s an e-stage
if s is an (e, n)-stage for some number n, and call s critical if s is an e-stage for
some number e. It suffices to show that there are only finitely many critical stages.
We do this by showing that (a) any critical stage s is an e-stage for some e ≤ x
and (b) for fixed e there are only finitely many e-stages. For a proof of (a) let s
be critical. Fix the unique e, n, t such that s = 〈e, n, t〉. Then s is an (e, n)-stage.
Hence (i) - (iv) in the definition of xs hold and xs = ϕe(n)− 1 ≤ x. By the latter
and by (ii), e ≤ ϕe(n)− 1 = xs ≤ x. So (a) holds. For a proof of (b) fix e, and, for
a contradiction, assume that there are infinitely many e-stages. Obviously, for any
n, there is at most one (e, n)-stage. So, for any number m, there is an (e, n)-stage
such that n > m. On the other hand, if there is an (e, n)-stage s, then ϕe is defined
and nondecreasing on ω � n+1 and ϕe(n) is not the maximum of range(ϕe). So ϕe
is an order. It follows that there is a number n0 such that ϕe(n) > x+1 for n ≥ n0.
So there is no (e, n)-stage with n ≥ n0 which gives the desired contradiction.

Finally, fix e such that ϕe is an order and ϕe(0) > 0. We have to show that
(60) holds, i.e., that there is a number n0 such that γ∗(ϕe(n)− 1) ≥ ϕ̂n(n) for any
n ≥ n0 such that ϕ̂n(n) ↓. Let n0 be the least number n such that ϕe(n) > e+ 1.
Then, for any n ≥ n0 such that ϕ̂n(n) ↓, fix t minimal such that, for s = 〈e, n, t〉,
clauses (i) and (ii) in the definition of xs hold. (Note that such a stage must exist
since ϕe is an order.) It suffices to show that γ(ϕe(n)−1, s+1) ≥ ϕ̂n(n). If (iii) fails
then this is immediate. Otherwise, xs ≤ ϕe(n)− 1. So γ(ϕe(n)− 1, s+ 1) ≥ ϕ̂n(n)
in this case too.

This completes the proof of Theorem 6.13. �

We conclude this section by showing that the class of the strongly wtt-superlow
sets is downward closed under wtt-reducibility and that the class of the c.e. strongly
wtt-superlow sets is closed under join. Compare this with the corresponding results
for the eventually uniformly wtt-array computable sets (Lemmas 5.1 and 5.3) and
the wtt-superlow sets (Corollary 6.4).

Theorem 6.14. (a) Let A and B be any (not necessarily c.e.) sets such that
A ≤wtt B and B is strongly wtt-superlow. Then A is strongly wtt-superlow, too.

(b) Let A0 and A1 be strongly wtt-superlow c.e. sets. Then A0 ⊕ A1 is strongly
wtt-superlow, too.
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Proof. (a). Given a computable order h, it suffices to show that A† is h-c.a. By
clause 1. of Lemma 3.4, fix a strictly increasing computable function f such that,
for e ≥ 0, Φ̂Ae = Φ̂Bf(e), hence

A†(〈e, x〉) = B†(〈f(e), x〉)

for e, x ≥ 0. Now, since f is strictly increasing and so is 〈·, ·〉 (in either argu-
ment), 〈f(e), x〉 ≤ f(〈e, x〉). So, for any order h′ and any h′-bounded computable
approximation g′ of B†, g defined by g(〈e, x〉) = g′(〈f(e), x〉) is a computable ap-
proximation of A† and g is h′(f(n))-bounded. Since, for any computable order h
there is a computable order h′ such that h′(f(n)) ≤ h(n) for n ≥ 0, and since, by
assumption, B† is h′-c.a. for any computable order h′, this shows that A† is h-c.a.

(b) Given a computable order h, it suffices to show that (A0⊕A1)† is h-c.a. Fix
strictly increasing computable functions f0, f1 : ω → ω as given by Lemma 5.2, let
f(n) = f0(n) + f1(n) and let h′ be a computable order such that h′(f(n)) ≤ h(n)
for n ≥ 0. Then, since A0 and A1 are strongly wtt-superlow, we may fix h′-bounded

computable approximations gi of A†i (i ≤ 1). Now define g by

g(〈e, x〉, s) = min{g0(〈f0(e), x〉, s), g1(〈f1(e), x〉, s)}.

By (43), g is a computable approximation of (A0⊕A1)†. Moreover, by the definition

of g and by the choice of g0 and g1, g is ĥ-bounded by for the computable order ĥ
defined by

ĥ(〈e, x〉) = h′(〈f0(e), x〉) + h′(〈f1(e), x〉) ≤ 2h′(f(〈e, x〉)).

But, since f majorizes f0 and f1 and f and 〈·, ·〉 are strictly increasing, it follows

by the choice of h′ that ĥ(n) ≤ h′(f(n)) ≤ n for n ≥ 0. So (A0 ⊕A1)† is h-c.a. �

7. EUwttAC and Array Computable Sets

In the preceding section we have shown that the class of the c.e. wtt-superlow
sets is a subclass of EUwttAC. Here we show that the class of c.e. sets having
array computable (a.c.) wtt-degree is a superclass of EUwttAC, i.e., there is no
e.u.wtt-a.c. c.e. set which is wtt-equivalent to an array noncomputable (a.n.c.) set.

Before we do so, we give some background on the array (non)computable sets
and degrees. We mentioned in the introduction, already, that the array computable
degrees, introduced by Downey, Jockusch and Stob [DJS90], have proven a highly
successful unifying tool in the study of the computational power of c.e. (and general)
sets and Turing degrees. We recall from [DJS90] that a degree a is array noncom-
putable (a.n.c.) iff for all functions f ≤wtt ∅′ there is a function g computable from
a such that

∃∞x(g(x) > f(x)).

So array noncomputability is a kind of non-lowness property, closely resembling
– but more general than – non-low2-ness since the latter property is obtained if
in the above definition we consider all functions f which are Turing reducible to
∅′ and not only the ones which are wtt-reducible to ∅′. It turned out that many
constructions which were originally proven using non-low2-ness, could be adapted
to work with the weaker assumption that a is array noncomputable. For example,
Downey, Jockusch and Stob [DJS96] showed that every array noncomputable degree
bounds a 1-generic degree. The unifying power of such degrees can be seen in the
following summary theorem.
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Theorem 7.1. The c.e. a.n.c. degrees are those that:

• (Kummer [Kum96]) contain c.e. sets of infinitely often maximal Kolmogorov
complexity5.
• (Barmpalias, Downey and McInerney [BDM15]) have integer valued ran-

doms.
• (Downey and Greenberg [DG08]) have reals of effective packing dimension

1.

Moreover, (Cholak et al. [CCDH01]) the array noncomputable c.e. degrees form
an invariant class for the lattice of Π0

1 classes via the thin perfect classes.

Having illustrated the importance of the array noncomputable sets and degrees,
we now come back to our goal. For this purpose, we have to consider array non-
computable sets and their wtt-degrees (not their Turing degrees as in the examples
above). We use a characterization of the a.n.c. wtt-degrees in terms of multiple
permitting which is closer to the original definition of the computably enumerable
a.n.c. set in [DJS90] than the non-domination characterization given above. Mul-
tiply permitting sets have been introduced by Ambos-Spies in [AS18], and there
it is shown that the array noncomputable c.e. wtt-degrees, i.e., the wtt-degrees
which contain a computably enumerable a.n.c. set, can be characterized as those
c.e. wtt-degrees whose c.e. members are multiply permitting. For the definition of
a multiply permitting sets, recall that a very strong array (v.s.a. for short) is a
sequence F = {Fn}n∈ω of finite sets such that there exists a computable function
f : ω → ω such that for all n, Fn = Df(n), i.e., f(n) is the canonical index of Fn,
0 < |Fn| < |Fn+1| and Fn ∩ Fm = ∅ hold for all m 6= n. Then multiply permitting
c.e. sets are defined as follows.

Definition 7.2 ([AS18]). Let F = {Fn}n∈ω be a v.s.a., let f be a computable
function, let A be a c.e. set, and let {As}s∈ω be a computable enumeration of A.
Then A is F-permitting via f and {As}s∈ω if, for any partial computable function
ψ,

(62) ∃∞n ∀x ∈ Fn (ψ(x) ↓ ⇒ A � f(x) + 1 6= Aψ(x) � f(x) + 1)

holds. A is F-permitting via f if there is a computable enumeration {As}s∈ω
of A such that A is F-permitting via f and {As}s∈ω; A is F-permitting if A is
F-permitting via some computable f ; and A is multiply permitting if A is F-
permitting for some v.s.a. F . Finally, a c.e. wtt-degree a is multiply permitting if
there is a multiply permitting set A ∈ a.

By [AS18, Lemma 1], the property of being multiply permitting for a c.e. set
does not depend on the choice of the very strong array.

Lemma 7.3 ([AS18]). Let A be multiply permitting and let F = {Fn}n∈ω be a
v.s.a. Then A is F-permitting.

Moreover, as shown in [AS18], too, the multiple-permitting property is wtt-
invariant and the multiply permitting wtt-degrees coincide with the c.e. array non-
computable wtt-degrees.

Lemma 7.4 ([AS18]). For a c.e. wtt-degree a, the following are equivalent.

5Again, these classes are mentioned only to demonstrate the amazing unifying power of this
class, and hence we won’t formally define them, as it would interrupt the narrative flow.
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(1) a is a.n.c.
(2) a is multiply permitting.
(3) Every c.e. set A ∈ a is multiply permitting.

Using Lemma 7.3, we can show that the following holds.

Theorem 7.5. Let A be multiply permitting. Then A is not e.u.wtt-a.c.

Proof. Suppose that A is multiply permitting. It suffices to show that, for any
given computable functions g, k : ω2 → {0, 1} and any given computable order h
such that (6), (7) and (9) hold, (8) fails. For that, let F = {Fn}n∈ω be the unique

very strong array such that each Fn is an interval such that |Fn| = ĥ(n), where

ĥ(n) = bh(〈n,n〉)+1
2 c (note that ĥ is a computable order) and such that min(Fn+1) =

max(Fn) + 1 holds for all n. By Lemma 7.3, we may fix a computable function f
and a computable enumeration {As}s∈ω of A such that A is F-permitting via f
and {As}s∈ω, where, w.l.o.g., we may assume that f is strictly increasing.

Then we define a wtt-functional Γ in stages s where, by Lemma 3.3, we may
assume that in advance we know a number d such that Γ = Φ̂d holds. In particular,
by (6), lims→∞ g(〈d, n〉 , s) = 1 holds iff n ∈ dom(ΓA). In more detail, we define a

uniformly computable sequence of wtt-functionals {Γ̃e}e∈ω and we declare Γ̃Ae (n)
to be defined (undefined) at a stage s+ 1 only if g(〈e, n〉 , s) correctly approximates

whether or not Γ̃Ae (n)[s] is defined (so below, the reader may replace Γ by Γ̃e and
any occurence of d in any of the functions g and k by e). Then, by clauses 1. and

2. of Lemma 3.3 there exists d ∈ ω such that Γ̃d = Φ̂d. So d and Γ = Γ̃d are as
desired.

Then the definition of Γ is as follows, where we stick to the convention that
ΓA(n)[s + 1] = ΓA(n)[s] holds for any n and any stage s unless otherwise stated.
Fix n in the following.

Definition of ΓA(n).

Stage 0. Let ΓA(n)[0] ↑.

Stage s + 1. Let ΓA(n)[s] be given. Then we destinguish between the
following two cases.

(1) If ΓA(n)[s] ↑ and g(〈d, n〉 , s) = 0 hold then declare ΓA(n)[s+ 1] ↓.

(2) If ΓA(n)[s] ↓, g(〈d, n〉 , s) = 1, k(〈d, n〉 , s) = 1 and we have that
As+1 � f(max(Fn)) + 1 6= As− � f(max(Fn)) + 1, where s− is the
largest stage ≤ s such that ΓA(n)[t] ↓ holds for all t ∈ [s−, s], then
declare ΓA(n)[s+ 1] ↑.

By definition, Γ is a Turing functional and since, by clause (2), the use of Γ on input
n is bounded by f(max(Fn)), it follows that Γ is indeed a wtt-functional. Moreover,
by clause (1), we may argue that ΓA is total as we keep ΓA(n)[s] ↑ for any stage
s unless (1) holds. However, as g(〈d, n〉 , s) correctly approximates the question as
to whether or not x ∈ dom(ΓA) holds, it follows that, for any stage s such that
ΓA(n)[s] ↑, there exists a least stage t ≥ s such that ΓA(n)[t] ↑ and g(〈d, n〉 , t) = 0.
So for the least s such that As � f(max(Fn)) + 1 = A � f(max(Fn)) + 1 and
ΓA(n)[s] ↓, it follows that ΓA(n)[t] ↓ for all t > s. Hence, by (9), we may fix n0 ∈ ω
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such that lims→∞ k(〈d, n〉 , s) = 1 holds for all n ≥ n0. Likewise, we can argue
that for any stage s such that ΓA(n)[s] ↓ there exists a least stage t ≥ s such that
ΓA(n)[t] ↓ and g(〈d, n〉 , t) = 1. In particular, the clauses (1) and (2) always apply
alternatingly to ΓA(n).

Now consider the partial computable function ψ : ω → ω which is defined as
follows. Given n, let xn0 < · · · < xn

ĥ(n)−1 be the elements of Fn. Then ψ(xni ) is

defined inductively such that, for all i < ĥ(n)− 1, we have

ψ(xn0 ) = µs(P (n, s)),

ψ(xni+1) = µs(s > ψ(xni ) & P (n, s) & ∃t ∈ (ψ(xni ), s) (ΓA(n)[t] ↑)),

where P (n, s) holds iff ΓA(n)[s] ↓, g(〈d, n〉 , s) = 1 and k(〈d, n〉 , s) = 1 holds. Note
that, for all n, we have that either dom(ψ) ∩ Fn = ∅ or Fn ⊂ dom(ψ). Namely, by
definition, ψ(xni ) ↓ can only hold if ψ(xnj ) ↓ holds for all j < i and, if ψ(xni ) ↓ holds

for some i < ĥ(n) then, by (62) and since lims→∞ g(〈d, n〉 , s) = 1 holds, there exists
a stage t > ψ(xni ) such that (2) applies at stage t in the definition of ΓA(n); hence,
by (7), by the definition of P (n, s) and by the totality of ΓA, we may infer that
ψ(xni+1) ↓ holds. So since lims→∞ k(〈d, n〉 , s) = 1 holds for all n ≥ n0, it follows
that there exist infinitely many n such that ψ(xn0 ) ↓; hence, Fn ⊂ dom(ψ) holds.

However, for any such n, by the definition of Γ, it follows that, for any i ≤ ĥ(n),
there exist two stages ψ(xni ) ≤ s0 < s1 such that g(〈d, n〉 , si + 1) 6= g(〈d, n〉 , si)
holds for all i ≤ 1; and, if i < ĥ(n) then s1 < ψ(xni+1) holds. So for any n ≥ d such
that ψ(xn0 ) ↓ holds the number of mind changes of g(〈d, n〉 , ·) after stage ψ(xn0 ) is
at least

2ĥ(n) > h(〈n, n〉) > h(〈d, n〉),

so (8) fails for any such n. However, as there are infinitely many n ≥ d such that
ψ(xn0 ) ↓, we conclude that (8) fails, contrary to the choice of A. This completes the
proof. �

Corollary 7.6. Let A be c.e. and e.u.wtt-a.c. Then any c.e. set B which is wtt-
equivalent to A is array computable.

Proof. By Lemma 7.4 and Theorem 7.5. �

8. Separations

In the preceding sections we have given lower and upper bounds for the class
of the c.e. e.u.wtt-a.c. sets in terms of wtt-superlowness and array computabil-
ity, respectively: any wtt-superlow set is e.u.wtt-a.c. (Corollary 6.3) and any c.e.
e.u.wtt-a.c. set is array computable (Corollary 7.6). We conclude our investigations
of the e.u.wtt-a.c. sets by showing that these inclusions are proper. In fact, in the
case of the second inclusion, we get a slightly stronger result by showing that there
is an array computable c.e. Turing degree which contains a c.e. set which is not
e.u.wtt-a.c.

We start with the separation of wtt-superlowness and eventually uniform wtt-
array computability on the c.e. sets.
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8.1. A c.e. e.u.wtt-a.c. set which is not wtt-superlow. In order to separate
the c.e. wtt-superlow sets from the c.e. e.u.wtt-a.c. sets, by the Characterization
Theorem 4.2, it suffices to show the following.

Theorem 8.1. There is a maximal set M which is not wtt-superlow.

In the proof of the theorem we use the following sufficient condition for a c.e. set
M to be not wtt-superlow.

Lemma 8.2. Assume that M is c.e. and there is a partial computable function ψ
and a Turing functional Ψ such that the following hold.

(63) If ΨM (x) ↓ then ψ(x) ↓ and ΨM (x) = ΨM�ψ(x)(x) (for x ≥ 0).

(64) The domain of ΨM is not ω-c.a.

Then M is not wtt-superlow.

Proof of Lemma 8.2 (sketch). By (63) there is an index e such that the domain of

ΨM coincides with the domain of Φ̂Me . So, for any x, x ∈ dom(ΨM ) iff 〈e, x〉 ∈M†.
By (64) this implies that M† is not ω-c.a. So M is not wtt-superlow by Lemma
6.2. �

Proof of Theorem 8.1. We construct a c.e. set M , an auxiliary partial computable
function ψ, and an auxiliary Turing functional Ψ such that M is maximal and (63)
and (64) hold. Then, by Lemma 8.2, the set M has the required properties. The
construction is in stages, and we let Ms, ψs and Ψs denote the finite parts of M , ψ
and Ψ, respectively, enumerated by the end of stage s. Moreover, as in other places
too, we abbreviate ΨMs

s (x) by ΨM (x)[s].
The proof is similar to the proof of Theorem 4.3 though less involved. In par-

ticular, in order to make M maximal, we use the maximal set technique based on
a priority tree introduced there. We use the notation introduced there as well as
the basic observations made there, hence assume the reader to be familiar with the
first part of the proof of Theorem 4.3 discussing the maximal set strategy (up to
the Maximal Set Lemma).

The strategy to make M not wtt-superlow, i.e., the strategy to ensure that the
functional Ψ and its use function ψ satisfy conditions (63) and (64) locally resembles
the strategy used in the proof of Theorem 4.3 in order to ensure that A ≤ibT M .
So Ψ and ψ here and the functionals and functions Ψα and ψα defined there show
some fundamental similarities. Condition (64) is split into the requirements

R̂e : If dom(ΨM ) = λx. lims ge0(x, s) and ϕe1 is total then there is a
number x such that |{s : ge0(x, s+ 1) 6= ge0(x, s+ 1)}| > ϕe1(x).

for e ≥ 0 where {ge}e∈ω is a computable numbering of the primitive recursive
functions of type ω2 → {0, 1} and where (here and in the following) we assume
that e = 〈e0, e1〉.

The basic strategy for meeting requirement R̂e is as follows. We fix a number
x, called the target, which we make to witness that requirement R̂e is met. So we
leave the definition of ψ(x) and ΨX(x) to the R̂e-strategy. We wait for a stage s0
such that ϕe1,s0(x) is defined. (Note that if there is no such stage then x witnesses

that ϕe1 is not total whence R̂e is trivially met.) Once we see stage s0, we pick
ϕe1(x) + 1 many numbers yϕe1 (x) < yϕe1 (x)−1 < · · · < y0 not yet in M , called
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followers, and let the R̂e-strategy decide which of these numbers are enumerated
into M . Moreover, we let the use ψ(x) of Ψ on x be a strict upper bound on the
followers, say, ψ(x) = y0 +1, declare the strategy to be saturated and let the attack
reach its final phase where we guarantee that either ge0 does not approximate ΨM

on x or the number of mind changes of the approximation exceeds the allowed
bound ϕe1(x). Note that when we start this phase, say, at stage s1, then ΨMs1 (x)
is still undefined and none of the followers is in Ms1 . Now at stage s+1 > s1 act as
follows. If ΨMs(x) ↑ and ge0(x, s+ 1) = 0 then make ΨMs+1(x) be defined thereby
making the approximation incorrect at stage s+ 1. Note that this does not require
to change the oracle. If ΨMs(x) ↓ and ge0(x, s+ 1) = 1 and

(65) |{t ≤ s : ge0(x, t+ 1) 6= ge0(x, t)}| ≤ ϕe1(x)

then enumerate the greatest follower into M at stage s + 1 that has not been
enumerated into M previously. This allows to make ΨMs+1(x) to be undefined
(thereby making the approximation incorrect at stage s+ 1).

Note that this procedure ensures that the approximation ge0 of ΨM is incorrect
on x unless ge0 changes its mind on x after stage s1 more than ϕe1(x) times, whence

R̂e is met. Namely, if the approximation is correct, then, by using ϕe1(x) of the
followers we may force the approximation to change 1 + 2 ·ϕe1(x) times by making
the computation of Ψ on x alternatingly defined and undefined when the current
approximation is correct where the first switch is from undefined to defined and
where only a switch from defined to undefined requires to change the current oracle
below its use by enumerating a follower into M . So, in fact, the least follower will
never be enumerated into M , a fact which will be utilized in the maximal set part
of the construction (in particular, it will allow us to argue that M is infinite).

In order to make this strategy compatible with the maximal set strategy, for any
node α of length e there will be a strategy R̂α for meeting requirement R̂e. This
strategy, which is based on the guess that α is on the true path, may act only if α
is accessible and it picks only followers which have current e-state ≤ α. Moreover,
it picks followers one-by-one. We will argue that, for the node α of length e on the
true path, these modifications will not undermine the basic strategy. In particular
for such α where ϕe0 is defined on the target x, the strategy eventually will become
saturated.

Having explained the underlying ideas we can now give the formal construction
of M and the auxiliary functional Ψ and function ψ. If a strategy R̂α is initialized
at stage s + 1 then its target (if any) and followers (if any) are cancelled and the
strategy is declared to be not saturated. Stage 0 is vacuous, i.e., M0 = ∅, ΨX

0 (x) ↑
and ψ0(x) ↑ for all numbers x, and all strategies R̂α are initialized.

Stage s+ 1. A strategy R̂α requires attention at stage s+ 1 if α v δs and
one of the following holds where e = |α|.
(a) No target is assigned to R̂α at the end of stage s.

(b) Target x is assigned to R̂α at the end of stage s, ϕe1,s(x) ↓, and R̂α
is not saturated at the end of stage s. Moreover, for the greatest
number y such that y = x or y is a follower of R̂α at the end of stage
s, there is a number y′ such that y < y′ ≤ s, y′ is greater than any
follower of any higher priority strategy R̂α′ at the end of stage s, and
y′ ∈

⋃
{α′:|α′|=|α| and α′≤Lα} Vα′,s (i.e., y′ 6∈Ms and σ(|α|, y′, s) ≤ α).
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(c) R̂α is saturated at the end of stage s, x is the target of R̂α at the end
of stage s and one of the following holds.

(A) ΨMs
s (x) ↑ and ge0(x, s+ 1) = 0.

(B) ΨMs
s (x) ↓, ge0(x, s+ 1) = 1, (65) holds, and there is a follower y

of R̂α at the end of stage s such that y 6∈Ms.
Fix the least α (if any) such that R̂α requires attention. Declare that

R̂α receives attention and is active at stage s+1, and perform the following
action according to the case via which R̂α requires attention.
(a) Assign s+ 1 as target to R̂α.

(b) Appoint the least y′ as in (b) as follower of R̂α. Moreover, if there are

ϕe1(x) + 1 followers of R̂α then let ψs(x) = y′ + 1 and declare R̂α to
be saturated.

(c) If (A) holds then let ΨMs
s+1(x) = 0. If (B) holds then enumerate the

greatest follower y of R̂α such that y 6∈Ms into M and let Ψ
Ms+1

s+1 (x) ↑.
In case of (b) or (c), initialize all lower priority strategies R̂β (α < β) and
enumerate all numbers z ≤ s such that z 6∈ Ms and z is not a follower of
any strategy R̂β′ with β′ ≤ α at stage s+ 1 into M .

If no strategy R̂α requires attention then do nothing.

This completes the construction. In the remainder of the proof we show that the
set M has the required properties. This proof uses that the Infinity Lemma and
the Maximal Set Lemma hold which were established in the proof of Theorem 4.3
already.

Now, first note that the construction is effective and {Ms}s∈ω is a computable
enumeration of M . So M is c.e. Similarly, ψ is a partial computable function
and Ψ is a Turing functional with computable enumerations {ψs}s∈ω and {Ψs}s∈ω,

respectively. Moreover, (63) holds. (Namely, assume that Ψ
Ms+1

s+1 (x) 6= ΨMs
s (x) ↓

for some number x and stage s. Then there is a saturated strategy R̂α such that
R̂α has target x and an R̂α-follower y is enumerated into M at stage s+ 1. Since,
by construction, y < ψ(x) ↓, it follows that Ms+1 � ψ(x) 6= Ms � ψ(x). Obviously
this implies (63).)

So it only remains to show that M is infinite and, for any α @ TP , M ⊆∗ V̂α (by
the Maximal Set Lemma this implies that M is maximal) and that the requirements

R̂e are met. For this sake we prove a series of claims.

Claim 1. For any number y and any stage s there is at most one node α such
that y is an R̂α-follower at the end of stage s. Moreover, if y is an R̂α-follower at
the end of stage s then |α| < y ≤ s, σ(|α|, y) ≤ σ(|α|, y, s) ≤ |α|, and y is greater

than any follower of any higher priority strategy R̂β (β <L α) at the end of stage s.

Finally if y is R̂α-follower at stages s < s′ then R̂α is not initialized at any stage
s′′ such that s′ ≤ s′′ ≤ s′ (hence y is R̂α-follower at any such stage s′′).

Proof. By a straightforward induction on s. For the proof of the final part note
that if R̂α is initialized at a stage s′′ then any follower y appointed after stage s′′

will correspond to a target appointed after this stage whence y > s′′. �

Claim 2. Assume that y is the least follower of R̂α at stage s. Then y 6∈Ms.
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Proof. For a contradiction assume that y ∈ Ms and let ty + 1 ≤ s be the stage at
which y is enumerated into M . Let sy + 1 ≤ s be the stage at which y is appointed

and let x be the target of R̂α at stage sy. Then R̂α is neither initialized at stage
sy nor at any stage s′ + 1 with sy + 1 ≤ s′ + 1 ≤ s. Hence, for any such stage s′,

y follows R̂α at stage s′ + 1 and x is the target of R̂α at stage s′. It follows that
y can be enumerated into M at such a stage s′ + 1 only by action of R̂α whence
R̂α has to be saturated at stage ty. So we may pick the unique stage s′y such that

sy+1 ≤ s′y+1 < ty+1 and R̂α becomes saturated at stage s′y+1. Then ϕe1,s′(x) ↓
and there are ϕe1(x)+1 followers of R̂α at stage s′y+1, say, y0 > y1 > · · · > yϕe1 (x),

where y = yϕe1 (x) and none of theses followers is in Ms′y+1. Now, after stage s′y + 1

followers are enumerated into M in decreasing order, and this happens only if R̂α
becomes active via clause (c) in the definition of requiring attention. As observed
before this implies that ge0(x, s) has to change at least once before the first follower
is enumerated into M and between the enumeration of two followers, ge0(x, s) has
to change at least twice. So, for 0 ≤ k ≤ ϕe1(x), if yk is enumerated into M at
stage s′ + 1 ≤ ty + 1 then

|{t ≤ s′ : ge0(x, t+ 1) 6= ge0(x, t)}| ≥ 1 + 2k

holds. It follows by the choice of ty that

|{t ≤ ty : ge0(x, t+ 1) 6= ge0(x, t)}| ≥ 1 + 2ϕe1(y) > ϕe1(y).

But this implies that (65) fails for s = ty. So R̂α does not require attention via
clause (c) at stage ty + 1 whence y = yϕe1 (x) is not enumerated into M at stage
Mty contrary to the choice of ty. �

Claim 3. Any strategy R̂α on the true path (α @ TP ) is initialized at most
finitely often, requires attention at most finitely often and has a permanent target.

Proof. Note that the strategies R̂β are finitary, i.e., if a strategy R̂β is not initialized
after some stage s then it will act after stage s only finitely often. So, since strategies
require attention only if they are accessible and since there are only finitely many
stages at which strategies to the left of α @ TP are accessible, by a straightforward
induction on |α|, there is a stage s0 such that no strategy R̂β with β ≤ α will be

initialized or will require attention after stage s0. Moreover, R̂α has a target at
stage s0 (since otherwise, for the first α-stage s ≥ s0, R̂α will require attention via

clause (a) at stage s + 1) and the target is permanent since R̂α is not initialized
later. �

Claim 4. Assume that M is infinite and that α @ TP . Then the following hold
where |α| = e = 〈e0, e1〉.

(i) If ϕe1 is total then R̂α is permanently saturated, i.e., R̂α becomes saturated
at some stage and is not initialized later.

(ii) Requirement R̂e is met.

(iii) M ⊆∗ V̂α.

Proof. (i). Assume that ϕe1 is total. By Claim 3 fix a stage s0 such that R̂α
is not initialized and does not require attention after stage s0 and such that the
permanent target x of R̂α is defined at stage s0 (whence ϕe1,s0(x) is defined, too).
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Then any follower of any strategy R̂β with β ≤ α which is defined at any stage

s ≥ s0 is defined at stage s0 hence is less than or equal to s0. It follows that R̂α
is permanently saturated at stage s0. Otherwise, by the Infinity Lemma, there is
an α-stage s > s0 such that Vα,s 6⊆ ω � s0 + 1 hence R̂α will require attention via
clause (b) at stage s+ 1 contrary to choice of s0.

(ii). For a contradiction assume that requirement R̂e is not met. Then the
hypotheses of the requirement are satisfied, i.e., dom(ΨM ) = λx. lims ge0(x, s) and
ϕe1 is total, but the conclusion fails, whence for all numbers x and all stages s, (65)

holds. It follows that, for any sufficiently large stage s, the strategy R̂α requires
attention via clause (b) at stage s + 1 provided that s is an α-stage and R̂α has
a target x and a follower y at stage s where y 6∈ Ms. Since, by α @ TP , there
are infinitely many α-stages it follows by part (i) of the claim and by Claim 2 that

there are infinitely many such stages s. So R̂α requires attention infinitely often
contrary to Claim 3.

(iii). Obviously, there are infinitely many numbers e′ = 〈e′0, e′1〉 such that ϕe′1
is total. So, by part (i) of the claim, there are infinitely many α′ @ TP such that

R̂α′ has a permanent follower. So, by Claim 3, there are infinitely many stages s
at which a strategy R̂α′ with α′ � α acts via clause (b) whence any number y such

that y ≤ s and y is not a follower of a strategy R̂α′′ such that α′′ � α or α′′ @ α at
the end of stage s+ 1 will be enumerated into M at stage s+ 1 (unless y is in Ms

already). Since, by Claim 3, the strategies R̂α′ with α′ @ α have only finitely many
followers during the course of the construction, it follows that almost all numbers
y in M become a follower of a strategy R̂α′ with α′ � α at some stage s. But, by
construction, this implies that y has e-state ≤ α at stage s whence y ∈ V̂α. �

Claim 5. There are infinitely many stages s at which some strategy becomes
active via clause (b).

Proof. For a contradiction fix a stage s0 such that no strategy becomes active via
clause (b) after stage s0. Then no follower is appointed after stage s0 whence any
follower is ≤ s0 and there is a stage s1 ≥ s0 such that no strategy acts via clause
(b) or (c) after stage s1. So, by construction, no number ≥ s1 is enumerated into
M , hence M is infinite. But, by Claim 4 (i), this implies that, for infinitely many

α @ TP the strategy R̂α acts via (b). Contradiction. �

Claim 6. M is infinite.

Proof. By Claim 2 it suffices to show that there are infinitely many strategies R̂α
which have a permanent follower. For a contradiction assume not. Fix the node α
of lowest priority such that R̂α has a permanent follower. Then R̂α is initialized
only finitely often, hence requires attention only finitely often. So we may fix a
stage s0 such that no strategy R̂β with β ≤ α becomes active via (b) or (c) after

stage s0. On the other hand, by Claim 5, there is a strategy R̂β which becomes
active via clause (b) after stage s0. So we may fix β of highest priority such that

R̂β acts via (b) or (c) after stage s2, say, at stage s + 1. Then α < β, R̂β has a

follower at stage s+ 1 and, by the minimality of β, R̂β is not initialized after stage

s. So the followers of R̂β at stage s+ 1 are permanent. Contradiction. �

Claim 7. M is maximal and not wtt-superlow.
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Proof. As observed before, M is c.e. and (63) holds. So, in order to show that M is
maximal, by the Maximal Set Lemma it suffices to show that M is infinite and, for
any e, M ⊆∗ V̂TP �e, and, in order to show that M is not wtt-superlow, it suffices

to show that, for e ≥ 0, requirement R̂e is met. But, by Claim 6 and by Claim 4
(iii) and (ii), these properties hold. �

This completes the proof of Theorem 8.1. �

Corollary 8.3. There is an e.u.wtt-a.c. c.e. set which is not wtt-superlow.

Proof. By Theorems 4.2 and 8.1. �

8.2. Separating eventually uniform wtt-array computability from array
computability. In this subsection we show that there is an array computable
Turing degree which contains a c.e. set which is not e.u.wtt-a.c. By the Character-
ization Theorem 4.2 it suffices to prove the following theorem.

Theorem 8.4. There is a c.e. set A such that the Turing degree of A is array
computable and such that A is not wtt-reducible to any maximal set.

Before proving the theorem, let us first describe the basic strategy for building
a c.e. set which is not wtt-reducible to any maximal set.

A c.e. set A such that A is not wtt-reducible to any maximal set can be defined
in stages s as follows (where As denotes the finite part of A enumerated by the end
of stage s and where A0 = ∅). It suffices to meet the requirements

Pe : If A = Φ̂
We0
e1 then We0 is not maximal.

for all numbers e = 〈e0, e1〉.
The strategy for meeting Pe is based on the following observation. If F =

{Fn}n∈ω is a complete disjoint strong array of intervals (i.e., the effectively given
finite sets Fn are intervals partitioning ω where minFn+1 = (maxFn) + 1) such
that

(66) ∃∞ n (|We0 ∩ Fn| ≥ 2)

holds then We0 is not maximal. Namely, assuming (66), the c.e. set Q defined by

Q ∩ Fn =

{
(We0 ∩ Fn) ∪ {µx ∈ Fn ∩We0} if Fn 6⊆We0 ,

Fn otherwise

is a c.e. super set of We0 satisfying We0 ⊂∞ Q ⊂∞ ω hence witnesses that We0 is
not maximal. On the other hand, if, for a complete disjoint strong array of intervals
{Fn}n∈ω, (66) fails then

(67) ∀∞ n (|We0 � (maxFn) + 1| < 2n).

This leads to the following idea. During the course of the construction we attempt
to define a complete disjoint strong array of intervals {Fn}n∈ω such that, for any
n, there are 2n+ 1 numbers xn,0 < xn,1 < · · · < xn,2n in Fn such that ϕ̂e1(xn,2n) ≤
maxFn (and where these numbers xn,k are reserved for the strategy to meet Pe).
Now, assuming A = Φ̂

We0
e1 we can define such a strong array (since the assumption

implies that ϕ̂e1 is total). Moreover, if (66) fails, hence (67) holds then, for any n

which satisfies the inner clause of (67), we can guarantee A 6= Φ̂
We0
e1 by enumerating

(some of) the numbers xn,0 < xn,1 < · · · < xn,2n into A. Namely, assuming that
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A = Φ̂
We0
e1 , for almost all stages s we have that |We0,s � (maxFn) + 1| < 2n and

As � (maxFn) + 1 = Φ̂
We0,s
e1,s � (maxFn) + 1. But, since ϕ̂e0(xn,k) ≤ maxFn, at any

such stage s we may force an additional number y ≤ maxFn to enter We0 after stage
s by enumerating x into A. Since there are less than 2n numbers y ≤ maxFn which

are not yet in We0 at stage s whereas there are 2n + 1 numbers xn,k, A 6= Φ̂
We0
e1

must hold.
Now we are ready to prove Theorem 8.4.

Proof of Theorem 8.4. By a tree argument, we construct a c.e. set A with the re-
quired properties. The finite part of A enumerated by the end of stage s is denoted
by As. A0 = ∅.

In order to ensure that A is not wtt-reducible to any maximal set and that
deg(A) is a.c., it suffices to meet the requirements

Pe : If A = Φ̂
We0
e1 then We0 is not maximal.

(where e = 〈e0, e1〉) and

Ne : If ΦAe is total then ΦAe is h-c.a. for h(n) = n+ 1.

respectively (for e ≥ 0).

We call a requirement infinitary if its hypothesis is true. We need guesses which
N -requirements are infinitary. So we use the full binary tree T = {0, 1}∗ as the
priority tree. Then, for a node α of length > e, α(e) = 0 codes the guess that
requirement Ne is infinitary.

Define the computable length function l by

l(e, s) = max{y : ∀ x < y (ΦAse,s(x) ↓)}.

Then the guess δs at which of the first sN -requirements are infinitary made at stage
s + 1 is defined as follows. Inductively define α-stages for each node α as follows.
Each stage s ≥ 0 is a λ-stage. If s is an α-stage, then we call s α-expansionary
if l(|α|, s) > l(|α|, t) for all α-stages t < s, and we let s be an α0-stage if s is
α-expansionary and we let s be an α1-stage if s is an α-stage but not an α0-stage.
Then δs ∈ T is the unique string α of length s such that s is an α-stage. Moreover,
we say that α is accessible at stage s+1 if α @ δs, i.e., if s is an α-stage and |α| ≤ s.

The true path f : ω → {0, 1} of the construction is defined by

f(n) =

{
0 if there are infinitely many (f � n)-expansionary stages

1 otherwise.

Note that f is the leftmost path through T visited infinitely often, i.e., for any n,

(68) ∀∞s (f � n ≤ δs) and ∃∞s (δs � n @ f).

Moreover, since

(69) ΦAe total ⇒ lim
s→∞

l(e, s) = ω

it follows that, for infinitary Ne, f(e) = 0.

For each node α of length e there is a strategy Pα for Pe which is based on the
guess α.
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At stage s any strategy Pα is in one of the following states: n-expanding or
n-diagonalizing for some n. If Pα is n-expanding (n-diagonalizing) for some n then
we say Pα is expanding (diagonalizing). The rank of Pα at stage s, denoted by rαs ,
is the coded pair 〈|α|,m〉 where m is the number of unfrozen intervals associated
with Pα at the end of stage s. If Pα is n-expanding at stage s then the intervals
Fαn′ with n′ < n are defined and Pα works on defining Fαn by first appointing the
followers xαn,0 < xαn,1 < · · · < xαn,2n one after the other and then by waiting for
ϕ̂e1,s(x

α
n,2n) to be defined in order to complete the definition of Fαn .

If a strategy Pα is initialized then all intervals and followers associated with it
are cancelled and the state of Pα is reset to “0-expanding”. At any stage s such that
δs ≤ α, Pα is initialized (in particular all P-strategies are initialized at stage 0). In
addition Pα may be initialized at stage s + 1 by the action of the acting strategy
Pβ . The latter can happen only if β @ α (note that if β <L α then Pα is initialized
automatically since β @ δs). If Pβ acts in order to diagonalize (i.e., according to
clause (i) or (ii) below) then all Pα with β @ α are initialized. Otherwise, i.e., if
Pβ acts in order to expand, then only those Pα with β @ α are initialized where
|α| is greater than the rank of Pβ .

If a strategy is initialized then it has to start all over again. In addition to
initialization there will be freezing and partial cancellation. This affects only some
of the intervals and the work on the current interval to be defined, respectively.
If an interval is frozen then it cannot be used for diagonalization later (hence its
followers cannot be enumerated into A later). Similarly all of the followers of an
interval under construction may be cancelled. In this case the construction of this
interval has to be started all over again with new followers greater than the current
stage. There are two events which may lead to freezing of an α-interval Fαn or
of the followers xαn,k of Pα: first if a lower priority strategy Pβ with α @ β acts
by diagonalization and enumerates a number into A which is less than one of the
followers of Fαn or one of the followers xαn,k, respectively; second if the current
approximation δs of the true path moves to the left of the guess at the true path
based on which the interval Fαn was (or is being) built. For the latter case we
associate each interval with such a guess. If Pα is diagonalizing then it is protected
against freezing.

If a strategy Pα is initialized then all intervals and followers associated with it
are cancelled and the state of Pα is reset to “0-expanding”. At any stage s such
that δs ≤ α, Pα is initialized (in particular all P-strategies are initialized at stage
0). In addition Pα may be initialized at stage s + 1 by the action of the acting
strategy. Finally, any interval Fαn is associated with a guess γ. If α @ δs and δs < γ
then Fαn becomes frozen at the end of stage s unless Pα is n-diagonalizing (or Fαn is
frozen already). Freezing may also be caused by the acting strategies (see below).

At the end of any stage s, initialize all strategies Pα such that δs ≤ Pα. Moreover
if Pα is n-expanding and there is an unfrozen interval Fαn′ of Pα with guess γαn′
such that δs � rαs + 1 < γαn′ then, for the least such n′, freeze all intervals Fαn′′
with n′ ≤ n′′ < n and cancel any follower xαn,k which is defined. Similarly, if Pα is

n-expanding, xαn,0, . . . , x
α
n,k (k ≥ 0) are the current followers of Pα of order n and

δs � rαs + 1 < δtk′ � r
α
tk′

+ 1 for all k′ ≤ k where tk′ + 1 is the stage at which xαn,k′
became appointed then cancel xαn,0, . . . , x

α
n,k.

Then stage s+ 1 is as follows.
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Requiring attention and the corresponding potential action. Pα (|α| = e)
requires attention at stage s+ 1 if α @ δs and one of the following holds.

(i) Pα is not diagonalizing and there is an unfrozen interval Fαn such that

(70) |We0,s � (maxFαn ) + 1| < 2n.

Corresponding action. For the least such n, declare that Pα is n-
diagonali-zing.

Initialize all strategies Pβ such that α @ β. Moreover, for any strategy
Pβ such that β @ α, Pβ is expanding, say, nβ-expanding, and there is

an n′ ≤ nβ such that there is a follower xβn′,k′ > xαn,0, fix the least such

n′, freeze all intervals Fαn′′ with n′ ≤ n′′ < nβ (if not frozen already)

and cancel all β-followers xβnβ ,k of order nβ which are defined.

(ii) There is an n such that Pα is n-diagonalizing,

(71) As � x
α
n,2n + 1 = Φ̂

We0,s
e1,s � xαn,2n + 1,

and there is a follower xαn,k in Fαn \As.
Corresponding action. Put the greatest follower xαn,k ∈ Fαn \ As into
A.

Initialize all strategies Pβ such that α @ β. Moreover, for any strategy
Pβ such that β @ α, Pβ is expanding, say, nβ-expanding, and there is

an n′ ≤ nβ such that there is a follower xβn′,k′ > xαn,0, fix the least such

n′, freeze all intervals Fαn′′ with n′ ≤ n′′ < nβ (if not frozen already)

and cancel all β-followers xβnβ ,k of order nβ which are defined.

(iii) (i) does not hold, there is an n such that Pα is n-expanding and the
follower xαn,2n is not yet defined.

Corresponding action. For the least k such that xαn,k is not yet defined
let xαn,k = s + 1. Declare that xαn,k becomes associated with Pα as

(n-)follower (of order k).

Initialize all strategies Pβ such that α @ β and |β| > rαs .
(iv) (i) does not hold, there is an n such that Pα is n-expanding, the

follower xαn,2n is defined and ϕ̂e1,s(x
α
2n) is defined as well.

Corresponding action. Let Fαn = [xn, s] where x0 = 0 and xn =
1 + maxFαn−1 for n > 0. Assign the guess γαn to Fαn where

γαn = min{δtk � rαtk + 1 : k ≤ 2n}
where tk + 1 is the stage at which xαn,k became appointed. Declare

that Pα is (n+ 1)-expanding.

Initialize all strategies Pβ such that α @ β and |β| > rαs .

Selecting the strategy which will act. If there is a strategy which requires
attention then, for any α @ δs such that Pα requires attention let pαs = 2|α|
if α requires attention via one of the clauses (i) or (ii) and let pαs = 2rαs +1 if
α requires attention via clause (iii) or (iv). Then, from the strategies which
require attention, the strategy Pα with minimal value pαs receives attention
and becomes active and the action corresponding to the clause according
to which Pα requires attention is performed.
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VERIFICATION.

Claim 1. Assume that Pα is n-diagonalizing at stage s+ 1 and not initialized after
stage s. Then Pα is n-diagonalizing at all stage s′ ≥ s+ 1 and Pα acts only finitely
often.

Proof. By assumption and by construction, strategy Pα is n-diagonalizing at all
stage s′ ≥ s+ 1 and Fαn [s′] = Fαn [s+ 1] hence xαn,k[s′] = xαn,k[s+ 1] for all k ≤ 2n.

So, after stage s′, Pα can act only according to clause (ii) and, whenever it acts,
one of the 2n+ 1 followers xαn,0[s′], . . . , xαn,2n[s′] is enumerated into A. So this can
happen at most 2n+ 1 times. �

Claim 2. Assume that Pf�e becomes active infinitely often. Then

(72) lim
s→∞

rf�es = ω.

Proof. For a contradiction assume that the claim fails. Fix r minimal such that,
for some number e,

(73) Pf�e becomes active infinitely often and ∃∞s (rf�es ≤ r).

Fix the unique numbers e and m such that r = 〈e,m〉 (note that e ≤ r). Then, by
the minimality of r, e is the unique number satisfying (73) whence

(74) ∀ e′ 6= e (Pf�e′ becomes active infinitely often ⇒ ∀∞s (rf�e
′

s > r)).

Moreover,

(75) ∀∞s (r ≤ rf�es ) and ∃∞s (r = rf�es ).

Since, by the definition of the true path, f � r < δs for almost all s and since, by
the definition of the rank, rf�e

′

s > r for all e′ > r and all s, by the above we may
fix a stage s0 > r such that, for any s ≥ s0, the following hold.

(76) f � r < δs

(77) r ≤ rf�es

(78) ∀ e′ 6= e (Pf�e′ does not become active at stage s+ 1 or rf�e
′

s > r)

By (76), (77) and (78), any strategy Pf�e′ with e′ ≤ r can be initialized after
stage s0 only if some strategy Pf�e′′ with e′′ < e′ becomes active via clause (i) or
(ii). So, by Claim 1, it follows by a straightforward induction on e′ that there is a
stage s1 > s0 such that no Pf�e′ with e′ ≤ r is initialized or acts according to (i) or
(ii) after stage s1. Hence, in particular, any interval assigned to Pf�e after stage s1
is permanent. (In the following let Fαn (n ≥ 0) denote the permanent intervals of
Pf�e if they exist.) Moreover, since Pf�e acts infinitely often we may deduce that
Pf�e is expanding at all stages s > s1. So we fix ns such that Pf�e is ns-expanding
at stage s (s > s1). Then ns is nondecreasing in s. Moreover, if {ns : s > s1}
is bounded then, for n = max{ns : s > s1}, the followers of Pf�e are cancelled
infinitely often. So (in any case) we may fix a stage s2 > s1 such that, for s ≥ s2,

the least Pf�e-follower xf�ens,0
[s] of order ns at the end of stage s has been appointed

after stage s1 or is undefined.
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Next observe that, by the second part of (75) and by the definition of the
rank, there are at most m permanent Pf�e-intervals which are never frozen, say,
F f�ep0 , . . . , F f�epm′−1

where p0 < · · · < pm′−1 and m′ ≤ m+1. Moreover, we may pick a

stage s3 > s2 such that F f�epm′−1
is defined at stage s3. Then, for any s > s3 and for

the number ns such that Pf�e is ns-expanding at stage s, ns > pm′−1. So, in order
to get the desired contradiction, it suffices to show that there is a stage s > s3 such
that F f�ens becomes defined and is never frozen.

For this sake we first observe that there is a stage s such that

(79) s > s3 and s is an (f � r)-stage and r = rf�es .

The existence of such a stage is shown as follows. Since there are infinitely many
(f � r)-stages and infinitely many stages s such that r = rf�es , we may pick two
consecutive (f � r)-stages s′ and s′′ such that s3 < s′ < s′′ and such that there is

a stage t ∈ [s′, s′′] such that r = rf�et . Fix the least such t. We claim that r = rf�es′

or r = rf�es′′ (or both). For a contradiction assume not. Then s′ < t < s′′ and

(80) rf�et < rf�es′ and rf�et < rf�es′′ .

Now, by the second part of (80), there must be an interval F f�en with n ≥ nt which
is defined and not frozen at stage s′′. On the other hand, by the first part of (80),
some (f � n)-interval becomes frozen at stage t whence, by the freezing process, all

(f � e)-followers of order nt are cancelled at stage t. So all of the followers xf�en,k

in F f�en are appointed at stages t′ with t < t′ < s′′. Since, for any such stage t′,
f � r <L δt′ � r it follows that f � r <L γf�en for the guess γf�en associated with

F f�en . Since, by the choice of s′′, f � r v δs′′ � r
f�e
s′′ , it follows that F f�en becomes

frozen at stage s′′ contrary to choice of this interval. This completes the proof of
(79).

Now fix a stage s as in (79). It suffices to show that F f�ens becomes defined and

is never frozen. Fix k ≥ 0 maximal such that xf�ens,k−1 is defined at stage s. Note

that, by s > s0, Pf�e becomes active at any stage s′ + 1 ≥ s + 1 such that s′ is

an (f � e)-stage and r = rf�es′ . Now, first assume that k < 2ns + 1. Then, at

stage s+ 1, xf�ens,k
= s becomes appointed and all strategies Pα with f � r < α are

initialized. Since, by the choice of s1, no strategy Pα with α ≤ f � r enumerates
any number into A after stage s1, it follows that no number ≤ s will enter A after
stage s. So, in particular, if k + 1 < 2ns + 1 and s′ is the least (f � e)-stage > s

then r = rf�es′ (note that the rank of Pf�e can grow only if a new (f � e)-interval
becomes assigned and that the latter can happen only at (f � e)-accessible stages)

and the next follower xf�ens,k+1 = s′ becomes appointed at stage s′ + 1. Moreover,

again, all strategies Pα with f � r < α are initialized whence no number ≤ xf�ens,k+1

may enter A after stage s′. It follows by induction that there is an f � r-stage

s′′ > s such that xf�ens,2ns
= s′′ becomes appointed at stage s′′ + 1 and no number

< xf�ens,2ns
enters A after stage s′′. Since Pf�e acts infinitely often, it follows that

at the next stage where the strategy acts, F f�ens becomes defined. Moreover, since

no number < xf�ens,2ns
will enter A later, F f�ens will not be frozen by the action of

any strategy. Finally, since xf�ens,k+1 became appointed at an (f � r)-accessible stage

s+ 1 where r = rf�es , it follows that F f�ens is associated with the guess γf�ens = f � r
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whence F f�ens will no be frozen at all. This completes the proof that F f�ens becomes
defined and is never frozen in the case of k < 2ns + 1.

If k = 2ns + 1 then the argument is similar. Consider the stage t + 1 < s + 1

at which xf�ens,2ns
becomes defined. Since xf�ens,2ns

does not become cancelled by the

end of stage s, as in the proof of (79) we may argue that t is an (f � r)-stage and

r = rf�et . So all strategies Pα with f � r < α are initialized at stage t+ 1. So, as in

the first case, we may argue that no number ≤ xf�ens,2ns
will be put into A after stage

t, that F f�ens eventually becomes defined, and that F f�ens will never be frozen. �

Claim 3. Pf�e is initialized at most finitely often.

Proof. The proof is by induction on e. Fix e. Since f � e < δs for all sufficiently
large s, by the inductive hypothesis we may fix a stage s0 > e such that no strategy
Pf�e′ with e′ < e is initialized after stage s0 and such f � e < δs for all s ≥ s0.
Moreover, w.l.o.g. we may assume that no strategy Pf�e′ with e′ < e acts after
stage s0 unless it acts infinitely often. So, by Claim 1, Pf�e, will be initialized at
a stage s + 1 > s0 only if a strategy Pf�e′ with e′ < e acts via clause (iii) or (iv)

at this stage and rf�e
′

s < e. Since Pf�e′ must be a strategy which can act infinitely
often, it follows by Claim 2 that this can happen only finitely often. �

Claim 4. Assume that Pf�e acts infinitely often. Then Pe is met.

Proof. By Claim 3 let s0 be the greatest stage at which Pf�e is initialized. Then,
at the end of stage s0, no interval is associated with Pf�e and Pf�e waits for 0-
expansion. Moreover, any interval which becomes associated with Pf�e after stage
s0 is permanent. So let F f�en be the nth interval permanently associated with Pf�e
(if defined). Since, by assumption and by Claim 2,

(81) lim
s→∞

rf�es = ω

and since intervals become associated in order of their indices, it follows that F f�en

is defined for all n and, by construction, {F f�en }n∈ω is a complete disjoint strong
array of intervals.

So, as pointed out in the description of the basic strategy for building a c.e. set
which is not wtt-reducible to any maximal set given after the statement of Theorem
8.4, in order to show that Pe is met it suffices to show that (67) fails for Fn = F f�en ,
i.e., that

(82) ∃∞ n (|We0 � (maxF f�en ) + 1| ≥ 2n)

holds. We do this by showing that there are infinitely many permanent intervals
which are never frozen and that any such interval satisfies the inner clause of (82):

(83) ∃∞ n (F f�en is never frozen)

(84) If F f�en is never frozen then |We0 � (maxF f�en ) + 1| ≥ 2n.

For a proof of (83), for a contradiction, assume that there are only finitely many
permanent (f � e)-intervals which are never frozen, say, F f�en0

, . . . , F f�enm−1
where

n0 < · · · < nm−1 and let r = 〈e,m〉. We will show that lim infs→∞ rf�es ≤ r

contrary to (81). For given s it suffices to find a stage s′′ > s such that rf�es′′ = r.
Fix s′ > s minimal such that the intervals F f�en0

, . . . , F f�enm−1
are defined at stage s′

and let s′′ be the least stage > s′ such that the interval with least index n which
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eventually becomes frozen after stage s′ becomes frozen at stage s′′. Then, by

construction, for any n′ > n such that F f�en′ is defined at stage s′′, F f�en′ becomes

frozen at stage s′′, too (unless F f�en′ had been frozen before already). Hence the
only intervals which exist at stage s′′ and are not frozen are the intervals F f�en0

, . . . ,

F f�enm−1
. So rf�es′′ = 〈e,m〉 = r, which completes the proof of (83).

It remains to show (84). For a contradiction assume that F f�en is never frozen
and |We0 � (maxF f�en ) + 1| < 2n. By Claims 1, 2 and 3 we may fix a stage t such
that, for e′ ≤ e, Pe′ is not initialized after stage t, Pe′ does not act via clause (i)
or (ii) after stage t, and - if Pe′ acts infinitely often - then, for any s ≥ t, Pe′ is

expanding at stage s and rf�e
′

s > e. Since, by assumption, Pe acts infinitely often,
it follows that Pe is expanding at all stages ≥ t and does not require attention
via clause (i) after stage t (since, otherwise, it would become active via clause (i)
contrary to choice of t). On the other hand, by the choice of n, for all sufficiently
large stages s, F f�en is defined and unfrozen at stage s and (70) holds. So Pe requires
attention via clause (i) at almost all stages s > t. A contradiction. This completes
the proof of (84) and the proof of Claim 4. �

Claim 5. Pe is met.

Proof. W.l.o.g. we may assume that A = Φ̂
We0
e1 (whence, in particular, ϕ̂e1 is total).

By Claim 4 it suffices to show that Pf�e acts infinitely often. For a contradiction
assume that this is not the case. Then we may fix a stage s0 > e such that Pf�e does
not act after stage s0 and such that the intervals associated with Pf�e at the end of

stage s0 - say, F f�e0 , . . . , F f�en−1 (n ≥ 0) - are permanent, and such that the intervals

associated with Pf�e which are not frozen at stage s0 - say, F f�en0
, . . . , F f�enm−1

(where

n0 < . . . nm−1 ≤ n− 1 and m ≤ n) - do not become frozen later, and such that the

followers of order n associated with Pf�e at the end of stage s0 - say, xf�en,0 , . . . , x
f�e
n,k−1

(0 ≤ k ≤ 2n+ 1) - are not cancelled later. Note that this implies that r = rf�es for
all s ≥ s0 where r = rf�es0 .

Now, by Claims 1, 2 and 3, fix an (f � e)-stage s1 > s0 such that no strategy
Pf�e′ with e′ ≤ e is initialized after stage s1 − 1, no strategy Pf�e′ with e′ < e acts
via clause (i) or (ii) after stage s1, and, for any e′ < e such that Pf�e′ acts after

stage s1, rf�e
′

s > r for all s ≥ s1. Moreover, by A = Φ̂
We0
e1 and by the totality of

ϕ̂e1 , w.l.o.g. we may assume that

A � 1 + maxF f�en−1 = As1 � 1 + maxF f�en−1 = Φ̂
We0,s1
e1,s1 � 1 + maxF f�en−1

(provided that n > 0) and ϕ̂e1,s1(xf�en,k−1) ↓ (provided that k = 2n+ 1).
Note that s1 is chosen so that Pf�e will become active at any stage s + 1 > s1

at which it requires attention. So, by s0 < s1, Pf�e will not require attention after
stage s1.

Now, in order to get the desired contradiction, we distinguish the following two
cases depending of the state of Pf�e at stage s1.

Case 1: Pf�e is diagonalizing at stage s1. Fix t < s1 maximal such that Pf�e is

not diagonalizing at stage t. Then Pf�e acts via clause (i) at stage t + 1 and it
becomes n′-diagonalizing for some n′ at this stage. Moreover, by the maximality of
t, Pf�e is not initialized after stage t, hence is n′-diagonalizing at all stages s > t, the
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interval F f�en′ [t] is permanent and so are the 2n′ + 1-followers xf�en′,0[t], . . . , xf�en′,2n′ [t].
Moreover, by construction, none of these followers is in At+1 and

(85) |We0,t � (maxF f�en′ [t]) + 1| < 2n′.

It follows by A = Φ̂
We0
e1 that at any sufficiently large (f � e)-stage s such that there

is a follower xf�en′,k[t] left which has not yet been enumerated into A, Pf�e will require

attention according to clause (ii). Since, by the choice of s1, Pf�e does not require
attention after stage s1, there must be stages stages t < t2n′ < t2n′−1 < · · · < t0
such that Pf�e acts according to clause (ii) at stage tk′ + 1 and the follower xf�en′,k′ [t]

is enumerated into A at stage tk′ + 1. So, Atk′+1(xf�en′,k′ [t]) 6= Atk′ (x
f�e
n′,k′ [t]). By

condition (71) in (ii) this implies

Φ̂
We0,tk′
e1,tk′

(xf�en′,k′ [t]) 6= Φ̂
We0,tk′−1

e1,tk′−1
(xf�en′,k′ [t])

where both sides are defined (and where t−1 is the least stage s > t0 such that

Φ̂
We0,s
e1,s � xαn′,2n′ [t] + 1 = Φ̂

We0
e1 � xαn′,2n′ [t] + 1). Since ϕ̂e1(xf�en′,k′ [t]) ≤ maxF f�en′ [t]

for all k′ ≤ 2n′, this implies that 2n′ + 1 numbers ≤ maxF f�en′ [t] have to enter We0

after stage t. But this contradicts (85).

Case 2: Pf�e is expanding at stage s1. Since Pf�e neither acts nor is initialized

after stage s0 and since s0 < s1, it follows that Pf�e is n-expanding at all stages

s ≥ s1. Moreover, for any such stage s, xf�en,0 , . . . , x
f�e
n,k−1 are the followers of order n

associated with Pf�e at stage s. In order to get the desired contradiction, it suffices
to show that Pf�e requires attention after stage s1. This is done by distinguishing
the following two cases. If k < 2n+1 then Pf�e requires attention via clause (iii) at
the first stage s+1 > s1 at which Pf�e is accessible. If k = 2n+1 then Pf�e requires
attention via clause (iv) at the first stage s + 1 > s1 at which Pf�e is accessible

and at which ϕ̂e1,s(x
f�e
n,k−1) is defined. Note that, by A = Φ̂

We0
e1 , such a stage must

exist. This completes the proof of Case 2 and the proof of Claim 5. �

Claim 6. Ne is met.

Proof. W.l.o.g. assume that ΦAe is total. It suffices to define a computable function
g such that, for any n ≥ 0,

(86) lim
k→∞

g(n, k) = ΦAe (n) & |{k : g(n, k + 1) 6= g(n, k)}| ≤ n+ 1.

By assumption, f(e) = 0. So α @ f for α = (f � e)0. Pick the least α-stage s0 such
that

(87) ∀ s ≥ s0 (α < δs)

and

(88) ∀ β v α (Pβ does not act via clause (i) or (ii) after stage s0),

and let s0 < s1 < s2 < . . . be the α-stages ≥ s0. Then, for n < m, l(e, sm) > n

hence Φ
Asm
e,sm(n) ↓ (hence ϕ

Asm
e (n) ↓). Hence if we let

g(n, k) = Φ
Asn+1+k
e,sn+1+k(n)
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then g is total and computable and limk→∞ g(n, k) = ΦAe (n). So, for a proof of
(86), it suffices to show that

(89) |{k : Asn+1+k+1
� ϕ

Asn+1+k
e (n) 6= Asn+1+k

� ϕ
Asn+1+k
e (n)}| ≤ n+ 1.

For a proof of (89) we first show by induction on n that, for any n, there exist at
most n followers at the end of stage sn which may enter A later whence

(90) |(A � sn + 1) \ (Asn � sn + 1)| ≤ n

(since followers appointed after stage sn are greater than sn). For n = 0 the claim
is obvious if s0 = 0. So w.l.o.g. assume that s0 > 0. Since, by the choice of s0 no
strategy Pβ with β ≤ α enumerates a follower into A after stage s0, it suffices to
show that no strategy Pγ with α < γ has a follower at the end of stage s0. If α <L γ
then this is obvious since Pγ becomes initialized at the α-stage s0. So assume that
α @ γ. Fix the greatest α-stage s < s0. By the minimality of s0, (87) or (88) fails
for s in place of s0. So Pγ is initalized at stage s or stage s + 1, respectively, and
Pγ does not act at stage s+ 1. So Pγ does not have a follower at the end of stage
s + 1. Since s is the greatest α-stage < s0 and Pγ may act only at stages where
α is accessible, Pγ does not have any follower at the end of stage s0, either. This
completes the proof of the case n = 0. For the inductive step assume that n > 0
and that there are at most n−1 followers at the end of stage sn−1 which may enter
A later. Since at stage sn−1 + 1 at most one new follower is appointed and since
any follower appointed at a stage s+ 1 such that sn−1 + 1 < s+ 1 ≤ sn has to be
appointed to a strategy Pγ with α <L γ hence will be initalized at the end of stage
s0, the claim for n follows immediately.

Now, by (90), for a proof of (89) it suffices to show that, for any k ≥ 0, such
that

(91) Asn+1+k+1
� ϕ

Asn+1+k
e (n) 6= Asn+1+k

� ϕ
Asn+1+k
e (n)

we have

(92) Asn+1+k+1
� sn+1 + 1 6= Asn+1+k

� sn+1 + 1.

For a contradiction assume that the latter is not true. Fix k minimal such that (91)
holds but (92) fails, and fix x minimal such that x ∈ Asn+1+k+1

\Asn+1+k
. Then

sn+1 < x < ϕ
Asn+1+k
e (n) ≤ sn+1+k.

Next fix β such that x is a Pβ-follower, say, x = xβm,p. Note that, by the choice
of s0, α < β. In fact, since at stage sn+1+k all strategies Pγ with α <L γ are
initialized, α @ β. So Pβ may act only at stages where α is accessible, hence x is
enumerated into A at stage sn+1+k+1 and (since sn+1 < x < sn+1+k) there is some
k′ < k such that x = xβm,p = sn+1+k′+1 becomes appointed as Pβ-follower at stage

sn+1+k′ + 1. Since, by the latter, ϕ
As

n+1+k′
e (n) ≤ x whereas, by the choice of x,

x < ϕ
Asn+1+k
e (n) it follows that there must be a number k′′ such that k′ ≤ k′′ < k

and (91) holds for k′′ in place of k whence, by the minimality of k, (92) holds for
k′′ in place of k, too. So fix x′ ≤ sn+1 and s such that sn+1+k′′ ≤ s < sn+1+k′′

and x′ is enumerated into A at stage s + 1, and let Pβ′ be the strategy which
enumerates x′ into A at stage s+ 1. Now, in order to get the desired contradiction,
consider the relation between β and β′. Since the Pβ-follower x exists at stage s
and is enumerated into A after stage s+ 1, Pβ is not initialized at stage s+ 1 and x
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neither becomes frozen nor becomes cancelled at stage s+1. By the former, β ≤ β′.
First assume β < β′. Then Pβ has to be m-diagonalizing at stage s since x′ < x
and x = xβm,p is neither frozen nor cancelled at stage s + 1. So we may fix the
greatest stage t+ 1 < s at which Pβ acts according to clause (i) (thereby becoming
m-diagonalizing at stage t + 1) then Bβ′ becomes initialized at stage t + 1. Since,
by the maximality of t+ 1, x is a Pβ-follower at stage t+ 1 hence x < t+ 1. Since
x′ < x it follows that x′ becomes cancelled at stage t + 1, a contradiction. This
leaves the case that β′ = β. Then x and x′ are Pβ-followers at stage sn+1+k hence
both associated with the same interval F βm. But, by construction, such followers
are enumerated in decreasing order. So, by x′ < x, x had to be enumerated first
contrary to choice of x and x′. So this case is impossible, too. Hence (91) implies
(92), which completes the proof of (89) and the proof of Claim 6. �

By Claims 5 and 6 all requirements are met. This completes the proof of the
theorem. �

Corollary 8.5. There is an array computable c.e. Turing degree a which contains a
computably enumerable set which is not eventually uniformly wtt-array computable.

Proof. By the Characterization Theorem 4.2 and Theorem 8.4. �

9. Questions and comments

Having introduced some new classification tools including a hierarchy of bounded
lowness notions, we have an infinite number of questions we might ask. We mention
a couple.

One separation we have not yet succeeded in finding is a Turing degree containing
an e.u.wtt-a.c. c.e. set which does not contain a wtt-superlow set. There likely
should be a domination/non-domination property corresponding to this question.
What is it?

Some of the notions considered in this paper – like wtt-superlowness and wtt-
jump traceability – are the wtt-analogs of notions previously defined for Turing
reducibility. The reader should note that the analogous game can be played from
the wtt-structures back to the Turing degrees. In particular, we may consider the
Turing analog of the notion which turned out to be central for our investigations,
namely, eventually uniform wtt-array computability.

Definition 9.1. A set A is eventually uniformly array computable if there exist
computable functions g, k : ω2 → {0, 1} and a computable order h such that, for all
e, x,

A′(x) = lim
s→∞

g(x, s),(93)

k(x, s) ≤ k(x, s+ 1),(94)

k(x, s) = 1⇒ |{t ≥ s : g(x, t+ 1) 6= g(x, t)}| ≤ h(x),(95)

∀e (ΦAe total ⇒ ∀∞x ∃s (k(〈e, x〉, s) = 1))(96)

(where A′ is the general halting set for A, i.e., A′ = {〈e, x〉 : ΦAe (x) ↓}).

This notion and similar ones seem to yield classes of degrees of complexity dif-
ferent than any seen before. They appear worth investigating.
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