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Abstract 

Downey, R., Every recursive boolean algebra is  isomorphic to one with incomplete  atoms, 
Annals of Pure  and Applied Logic 60 (1993) 193-206. 

The  theorem of the  title  is  proven, solving an old question of Remmel. The  method of proof 
uses  an algebraic technique of Remmel-Vaught combined with a complex tree  of s tra tegies  
argument where the  true  path is  needed to figure out the  final isomorphism. 

1. Introduction 

In this  paper, we solve an old ques tion of Remmel [lo, 111 by proving tha t for 
any recurs ive boolean a lgebra  B, there  is  a  recurs ive boolean a lgebra  B1 
isomorphic to B. such tha t the  a toms of B, are  Turing incomplete . This  result 
should be  seen in the  context of theoretic s tudies  looking a t the  behavior under 
isomorphism of dis tinguished re la tions  in recurs ive models , going back to, for 
ins tance , Ash and Nerode [l]. Remmel (10, 111 had earlier proven tha t if a  
boolean a lgebra  B, has  a  recurs ive presenta tion with an infinite  recurs ive se t of 
a toms, then for any given r.e . degree , B. had a  recurs ive copy whose  a toms had 
degree d. 

Modifying the  difficult coding argument of Feiner [5,6], Remmel, however, 
a lso showed tha t there  exis ts  a  recurs ive boolean a lgebra  B0 whose  a toms are  
intrins ica lly nonlow. That is , if B, is  a  recurs ive boolean a lgebra  isomorphic to 
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B0 then the  a toms of B1 form a  nonlow Ir: se t, and in particular are  not 
recurs ive . Every recurs ive boolean a lgebra  is  the  interval a lgebra  of a  recurs ive 
linear ordering. If B = Inta l(L), then the  a toms of B correspond to the  
success ivities  of L. It is  not difficult to show tha t if L is  a  linear ordering with an 
infinite  recurs ive se t of success ivities , then there  is  a  recurs ive L’ isomorphic to L 
such tha t the  success ivities  of L’ have degree d. Using this  sort of reasoning many 
theorems concerning boolean a lgebra  can be deduced by manipula ting results  on 
linear se ttings . 

Our result cannot be  so deduced. In [4] Downey and Moses  constructed a  
recurs ive linear ordering L whose success ivities  were intrins ica lly complete ; tha t 
is , a ll recurs ive linear orderings  isomorphic to L have complete  success ivities . 

Our result is  proven by a  tree  of s tra tegies  priority a rgument. A crucia l 
ingredient is  Remmel’s  extension (from [lo, 111) of Vaught’s  theorem. We discuss  
such pre liminaries  in Section 2 and prove the  main result in Section 3. We remark 
tha t the  combination of an isomorphism construction with the  Remmel-Vaught 
lemma has  other applica tions . In particular, Carl Jockusch and the  author [3] 
used this  technique to prove tha t a ll low boolean a lgebras  are  isomorphic to 
recurs ive ones , thereby solving a  ques tion da ting back to Feiner’s  1967 thes is  [5]. 

Nota tion is  s tandard and follows Soare  [12], Downey [2] and Monk [9]. 

2. Preliminaries 

Let B be a  recurs ive boolean a lgebra . It is  well known tha t B is  recursively 
isomorphic to a  recurs ive suba lgebra  of 0, the  a tomless  boolean a lgebra . This  is  
shown in, for ins tance , Remmel [lo, Theorem 1.21. The same proof a lso shows 
tha t there  is  a  recurs ive linear ordering L so tha t B is  recursively isomorphic to 
Inta l(L), the  interval suba lgebra  of left closed right open intervals  of L. We will 
suppose  tha t our boolean a lgebras  are  so presented a s  suba lgebras  of 0 given an 
interval a lgebra  of recurs ive suborderings  of the  ra tiona ls . Furthermore , for 
convenience, we sha ll suppose  tha t the  orderings  have endpoints . 

We will need the  following result of Remmel tha t extends  one of Vaught. 

2.1. Theorem (Remmel-Vaught [lo, Theorem 2.11). Let A LX a subalgebra of 0 
and suppose  the atoms of B are  infinite  in number. Le t Atom(B) = {d,, d,, . . . }_ 
For each i, suppose  e ’,, . . . , e i, are  pairwise  dis joint e lements  of 0 with 
di = r\f~, e i. Le t C be  the subalgebra of Q generated by B together with all the  e j. 
Then C is  isomorphic to B. 

For our purposes , we work with orderings . Let S(L) denote  the  collection of 
success ivities  (or adjacencies) of L. 
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2.2. Corollary. Let L, and L2 be suborderings of Q with infinitely many 
successivities. Suppose that there is an injective mapping g : L1-, L2 which is order 
preserving and has the property that if y $ rag then there exist c, d in ra  g such that 
][c, d]] < 03 and [g-‘(c), g-‘(d)] is a successivity of L,. 

Then Inta l(Z,,) is isomorphic to Inta l(L,). 

3. The proof 

In view of Lemma 2.2, to prove our main result, it will suffice to consider a  
recurs ive subordering A = {a;: i E o} of Q and to construct a  recurs ive linear 
subordering B of Q together with an isotone injection f :A+ B with the  property 
of Lemma 2.2 which we res ta te  here  for convenience. 

3.1. Zf b 4 ra  f then there exist c, d E ra  f such that c < b =C d, ][c, d]] < 00 and 

]f -‘(c), f -‘WI is a successivity in A. 

Let S(L) denote  the  collection of pa irs  tha t constitute  successivity of L. We 
build an r.e . se t D and meet the  requirements  

R2t7: eSCB) # D. 

Here we use  e to represent the  e th Turing procedure , and will s imilarly in the  
construction le t a t s tage  s , eDs  denote  e?. We sha ll use  a  Fredberg type s tra tegy 
to meet R,: We pick a  follower x, wait till 

I(e , s ) = max{x: (Vy <x)(eSCB~‘(x) = D,(x) = 0)) 

and then act to diagonalize  and preserve S(B,) = S(B). There may be infinite ly 
many a ttacks  on this  requirement, through infinite ly many x, but if this  is  the  case  
then the  requirement will meet by divergence. (More on this  la ter.) 

The most difficult part of the  construction will be  controlling the  definition off. 
In fact f will be  defined in a  Ai way via  the  ‘true  pa th’ of the  construction. While  
this  phenomenon is  not unique  (see  e .g. Downey [2]), it is  quite  unusua l. So we 
sha ll in fact construct a  tree  of partia l injections  with f (a;) = lim, f&ai) where  6 
denotes  the  initia l segment of the  true  pa th (TP) of the  construction devoted to 
a,. Hence to our lis t of requirements  we add the  additiona l ones: 

R 2e+l: If e(6) = 2e  + 1 and 6 E TP then lim f&(a,) =b(a,) exis ts . 

Furthermore we mus t ensure  tha t the  function f (ai) =h(ai) for e(6) = 2e  + 1 and 
6 G TP sa tis fies  3.1. 

To discuss  the  method whereby we achieve the  goa ls  above, we consider the  
s itua tion for sa tis fying an RZe in isola tion, but in the  ‘a-correct’ environment 
within which it will be  working. Now R2e, from some point onwards , will be  living 
in an environment where  there  will be  a  finite  number of points  Ci<...<C, 
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(including a l, . . . , a,) of A such tha t, a s  far a s  Rze is  concerned, f(q) is  fixed. 
That is  if 6 is  the  correct node devoted to solving Rze, then a t &s tages  s  (i.e ., 
when (r looks  correct) it will be  the  case  tha t B, mus t respect exactly the  
commitments : 

(i) f a , s(~ i) =  bj, (bj; fixed), and 
(ii) (This  will actually be  implicit from (i), a s  we see .) If [q, r] is  declared to be  

a  preserved block by some y devoted to some Rzk of higher priority than 6, then 
6 is  committed to keeping [q, r] to be  the  same s ize  in B,,, a s  it is  in B,. 

Diagram 1 below might be  helpful for visua lizing (i) and (ii) above; in a  typical 
s itua tion a t a  &stage  s . 

In Diagram 1, the  lined arrows mus t be  respected by Rze, but the  dotted ones  
can be shifted. Note  a lso tha t the  pullback of [q, r] in B is  a  successivity in A,. 
The idea  here  is  tha t [q, r] would be , in a  manner we will see , devoted to meeting 
RZk for some k. 

As we noted earlier, the  bas ic idea  used to meet the  Rze is  to use  a  Friedberg 
procedure . So we would like  to pick an X, wait till eSCBs)(x)J  = 0, put x into D and 
ensure  tha t S(B,) = S(B). Unfortunate ly, ensuring tha t S(B,) = S(B) is  a  very 
difficult ta sk, when combined with the  isomorphism property. For ins tance , if we 
need to ensure  for the  sake  of higher priority isomorphism conditions  tha t c1 --, bj, 
and c2+ bi, then if [cr, c2] is , say dense , then [bj,, bj,] in B must be  dense  too. 
Now if a t a  finite  s tep s  we try to preserve some successivity in [b,,, bjJs  we  will 
fa il. We need to guess  a t the  behavior of A re la tive  to the  fixed points . 

To make the  description s impler, we now concentra te  upon only one interval, 
namely [cr, c2]. Essentia lly we will try to guess  the  behavior and exis tence of 
successivity in A between cr and c2. At the  leas t refined level, we will need an 
outcome guess ing tha t, a t some s , I[cr, c2]/ = ([cr, c2] in A,(. We write  [cr, c& for 
‘[q, c2] in A,'. This  outcome is  guess ing tha t [c,, c2] is  finite  in A. 
Now if this  finite  outcome f is  truly the  correct one then S(B) conta ins  a ll 
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consecutive pa irs  in S([c,, c2]). If eS@) (x) = D(x), then in this  case  we mus t see  a t 
some s tage  s  a  computa tion eScBa’(x) = OS(x) where  S(B,) = S(B) on the  interval 
[ci, c2] = [cl, c&. Hence a  vers ion of Rz, guess ing this  outcome f will believe tha t 
[c,, c& = [cl, c,]. As  a  consequence, on f([c,, c2]), RZe guess ing f believe tha t 
S(B,) = S(B) (essentia lly). 

All other vers ions  of RZe equipped with other guesses  will wa it for certa in 
successivity to be  killed in [ci, c2] before they will be  prepared to believe tha t 
S(R) = S(B). 

The remaining cases  depend on whether [cr, c2] conta ins  a  success ivity, and 
whether neither, e ither or both [c,, x,] or [x2, c2] is  a  successivity for some x1, x2 
in A. The reason tha t this  is  important can be seen considering the  case  of a  
vers ion of RZe guess ing tha t [c,, c2] is  dense  (outcome d). In this  case  this  vers ion 
of Rze will never believe a  computation which re lies  on (x, y) E S(B,) with 
f(cJ  GX <y of. Th e reader should note  tha t ‘[ci, c2] dense’ is  II2 behavior. 
We can play the  outcome d when this  ‘appears  correct’. In this  case  one way to do 
this  is  to use  a  test set which we ca ll tes t(c,, c2, d, s). At some s tage  S , we put a ll 
the  current e lements  of [c,, cJS into tes t(c,, c2, d, s). We keep tes t(c,, c2, d, t) = 

tes t(c,, cz, d, s) until a  s tage  s1 > s  occurs  where  for a ll e lements  x < y in 
tes t(c,, cz, d, s,) ( = tes t(c,, c2, d, s)) there  is  an e lement z = z(x, y) with 
z E [ci, cJS , and x <z <y. At s tage  s l we could then play outcome d for [c,, c2] 
and reset the  tes t se t a s  tes t(c,, c2, d, SJ = [cl, c&,. Clearly if we play outcome d 
infinite ly often, then [c,, c,] is  dense . Note  tha t if [cr, c2] is  dense , a t the  end 
there  will be  an isomorphism between [c,, c2] and {z E B 1 f(cl) c z of}. 

For the  remaining outcomes which are  s tronger than f, but weaker than d, the  
s tra tegy is  more intrica te , and depends  not only on the  exis tence of success ivities  
in [c,, c2] but the ir overall location. Note  tha t, a s  above, it is  U2 to determine if 
c1 and/or c2 are  limit points  from respectively the  right and/or the  left. Namely 
for ci, for ins tance , we will have a  tes t se t limit(cl, s ). This  conta ins  a t a  s tage  s  
the  successor of c, a t s tage  s . We issue  another chip to the  outcomes tha t believe 
c, is  a  limit point in [cr, c2] if limit(c,, s ) # limit(ci, s  + 1). 

We will a rrange  the  outcome in the  following order of ascending priority. 

f - the  finite  outcome tha t [cl, c2] is  finite , 
(cl, c2) - tha t c, and c2 are  not limit points  
(c,, 03) - c2 is  a  limit point but c1 is  not, 
(a , c2) - c1 is  a  limit point but c2 is  not, 
(a , ~0) - both cl and c2 are  limit points  but [ci, c2] conta ins  a  success ivity, 
d - [c,, c2] is  dense . 

We can consider the  outcomes between f and d as  suboutcomes of s  the  outcome 
tha t believes  there  is  a  successivity in [ci, c2]. 

The (c,, c,)-strategy. The (c,, c,)-s tra tegy comes equipped with a  current guess  
(x I,S?  x~,~) a s  to the  successors  of c1 and c2 respectively. We play this  outcome 
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when d does  not look correct, but a  new element z enters  [cl, czlS+r - [cr , czls 
and z is  not in [cr, ~r,~) U  (x ~ ,~ , c 2]. For this  s ituation, an eSCBS)(x) computation 
will only be believable if, upon [cr, cJS  the  members  of S(B,) a re  partitioned into 
two disjoint se ts  with no common endpoints , and including f(cr) and f(cZ). A 
typical s ituation is  given in Diagram 2 above. 

The consistency condition for S(B,) is  tha t for all pa irs  (p, q) of the  form 
(f(c,), q), (zi, zj) (i > i) or (zi, f(cZ)) or (f(c,), f(c*)) with Godel numbers below 
u = u(e”; x) = 0, we  can believe o = S(B,) iff 

(i) #(p, q) E CJ iff (p, q) E S(K) for #(p, q) s u, and 
(ii) for some i, #(q, zi+r) > u. 
The reason for (ii) is  tha t we  a re , a fte r all believing tha t I[c,, c2]I = w and hence 

if the  outcome is  (cr, c2) then there  will need to be infinitely many ‘splitting’ 
elements  entering between f(cr) and f(cz). 

The idea  is  to now force  S(B) to extend o (should this  be the  correct outcome). 
To do this  we  find the  leas t i with #(z;, Zi+r) > u and map x~,~ to zi and x2,S  to 
zi+r. Adding I[cr , c2]1 - 4 new elements  (with la rge  Godel numbers) between z, 

Diagram 3. 
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and z4 to serve  as  images for the  remaining elements  of [c,, c2]. (See  Diagram 3 in 
the  case  c = 2.) 

The reader should note tha t the  elements  zi a re  no longer in the  range offs . If it 
is  indeed the  case  tha t xi = ~i,~ and x2 = qs  then the  fact tha t the  z, a re  no longer 
in the  range of f is  fine s ince, in essence , all we  a re  doing is  splitting the  
successivities  [ci, xi] and [x2, c2] finitely. Thus we  ge t a  temporary win by 
restraining the  definition offs  as  above (and so keeping S(B,) extending a ) and 
>utting x into D, causing a  disagreement. The s tra tegy above can only be injured 
if a t leas t one of the  s tage  s  successivities  ([c,, XJ  and [x~,~, cz]) contain a  
nonsuccessivity in B. S o we cancel the  maps above if there  occurs  a  number (L 
entering [c,, cZlt - [ci, cJ s  with a  splitting one of [c,, .x~,~] or [..q+ ~1. After this  
entry of a  occurs , to make the  cominatorics  s impler, we  agree  tha t we  won’t play 
the  [cl, c2] infinite outcome till ][c,, czlV] > I[f (c,), f (c2)]J. 

The (cl, a> s tra tegy. This  is  of course  similar to the  above. It is  played a t a  
‘Cc,, c2] infinite’ s tage  where  we  have seen qs  change since the  las t such s tage . To 
be (c,, m) believable, an esCB’) computation needs to include [f (c,), z,] as  a  
successively (if #[f (cl), z,] is  below its  use), it cannot believe [q, f (cZ)] is  a  
successivity and the  computation must be consistent with the  current information. 
We preserve  such a  s ituation by mapping ~i,~, to z, with [z,, f (c,)], a  successivity. 
For the  situation in Diagram 2, if instead of it being a  (c,, c,)-s tage  it was  a  

(c,, 03) s tage  we  would not ge t Diagram 2, ra ther we  would ge t Diagram 4 below. 
Again note the  addition of [[cl, c2] - 3) new points  between z, and fr and f (c2), 

to serve  as  images to the  ‘uncovered’ elements  of [c,, c2]. As with the  previous 
action, this  action can only be injured if its  premise  is  fa ls ified; tha t is , [c,, x~,~] is  
split a t some la ter s  s tage  t. Again we  agree  tha t we  would play the  infinite 
outcome afte r s tage  t until we  ge t [c,, czlv z= [[f (cl), f (cJ]J. 

The  (~0, 00) s trategy. This s tra tegy is  the  most involved of all. A string o 
(potentially S (B)) is  (m, w) correct if 

(i) for all zi, Zj if #(z~, Zj) < u(e9 X) then a (#(~,, zj)) = 1 iff (z,, zj) E S (B,), 

I./ 
f(Cl) z1 z2 z3 z4 25 ‘6 f (c,) 

Diagram 4 
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(ii) if Wf(cd, J z <U e”; X) then CT(#(~(C~), zi)) = 0, and ( 
(iii) if #(Zi, f(cZ)) < u(e”; x) then a(#(~~, f(q))) = 0. 
The idea  is  tha t we try to preserve o by mapping the  block [zr, z,] to the  leas t 

candida te  for a  successivity in [cr, c2] consis tent with a ll the  outcomes so far. 
After a ll, s ince  we are  not playing outcome d it mus t be  tha t for a t leas t some of 
the  S(A,) success ivities  are  s till in tes t(c,, c *, d, s). For a  typical s itua tion, in 
Diagram 5 below, we will indica te  by [di, di+,] the  poss ible  success ivities  of 
[c,, c2] if it is  the  case  tha t tes t(c,, c2, d, s) = lim, tes t(c,, c2, d, s). That is , some 
rea l successivity is  a lready present. The action will be  to map the  whole  of [zr, z,] 
to the  leas t [di, di+J. In Diagram 5, we suppose  #[di, di+,] < #[di+l, di+*], etc. 
Aga in we need to add new points  to get consis tency. 

The s itua tion above can only be  injured if we find out [d,, d2] is  not a  
success ivity. Suppose  this  occurs  a t s tage  t, tha t is  [dI, d2] is  split in A,. If we 
don’t wish to play outcome d, it mus t be  the  case  tha t a t s tage  t, e ither [d3, d4] or 
[d4, d5] is  s till a  successivity of A,. Suppose  for a  typical s itua tion [d3, d4] has  
been destroyed a lso so tha t only [d4, ds] remains . For s implicity, le t y2,r denote  
the  current predecessor of f(c2), and le t y,,, denote  the  current successor of f(c,). 
The action is  the  same a s  the  one for Diagram 5 except we can use  Y,,~ in place  of 
t, and y2,r and d5 to a  y3,r add new points  to the  res t, and a ttempt to preserve the  
block [~r,~, Y~,~]. Diagram 6 below typifies  this  s itua tion. 

Finally, if we discover tha t a ll of the  members  of tes t(c,, c2, d, s) are  not 
success ivities  in A (so in our s itua tion [d4, d5] gets  split), we will play the  outcome 
d. Again we wait till I[ Cl, Ctlvl ’ I[f(cJ~f(c2>ltJl = I[f(CAf(c2M~ 

The general R2, strategy. The above discuss ion is  for a  s ingle  pa ir cr, c2. In 
genera l, R, will need to be  believe a  number of b-fixed points , c~,~, . . . , c,(,),,. It 
will need to play the  appropria te  [ci, ci+r] s tra tegy for each interval, and s imilarly 
need s tra tegies  to work in the  ends . For s implicity we suppose  tha t A has  end 
points  p1 and p2 so tha t c~,~ = p1 and c,(,),, =p2, a t a ll s tages . The guesses  will be  
represented a s  n-tuples  of the  form (s , i, CL) corresponding to the  belief a t s tage  
s , Cl,s , . . . 7 G(e),, s tabilized (i.e ., a t a ll &s tages  >s , ci,s  = ci,r and n(e)(s) = 
12 (e)(t)) and in the  interval [Ci, Ci+r] the  outcome is  ,U E {f, (cl, c,), 
(Cl, co), (03, 4, (03, w), 4. 

The &+I strategy. Presented with the  above, R2e+l will reques t tha t fs(ai) map to 
the  leas t e lement in (or added to) B, consis tent with the  higher priority reques ts . 
Aga in, this  can cause  some interval I[a, b],l to no longer match I[f (a), f(b)],. 
This  is  only a  worry if I[a, b],l < I(f (a), f (b)lsl so tha t new elements  have been 
added. This  causes  no grief s ince  e ither [a , b] is  a  finite  block so tha t the  
Vaught-Remmel theorem applies , or eventually enough points  will appear in 
[a, b] to cover things . 

We now turn to the  formal de ta ils . The priority tree  T is  genera ted in s tages  by 
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associa ting the  Ri on pa ths  in order. Suppose  we have genera ted T on a  s tring o 
and &.+r is  the  requirement of highes t priority not a s  yet dea lt with. For 
convenience we sha ll add extra  ‘layers’ to the  outcome. Firs t for each canonical 
finite  se t D, and for each s  EN we wish an outcome (s , 0,) of u. We order these  
lexicographically. The intention here  is  tha t s  is  the  s tage  where  we are  never left 
of u aga in, a ll higher priority actions  are  known, and D, codes the  fixed points  we 
mus t respect. Moreover, we only consider D, with the  property tha t i, j E D,, i <j 
iff qi < qj where  qk denotes  the  kth ra tional. TO each such o-(s , 0,) we associa te  
the  outcomes of the  form r = ( rl, . . . , qDxl+l) where G E (~0, f> and zl, 
T,~~,+, = m, which are  ordered lexicographically with m <J . An outcome z with 
ri = m is  meant to encode the  belief tha t l[qi_l, qi]l = m. 

Finally, we expand each outcome r into its  appropria te  suboutcomes. So for 
each ri in r with rj = m, we have outcomes {d, (m, m), (m, cz), (c,, m), (cl, cJ} 
ordered from left to right, and so to each s tring r we associa te  by lexicographical 
ordering outcomes p = ( pI, . . . , pcD,,+,) such tha t ,U~ =f iff ri =f and pi E 
(4 (9 m), (m, c,), (c1, m), (cl, c2)} otherwise . This  is  where  we begin to play 
R 2e+l. We ass ign RB to each s tring of the  form q = a -(~, D,)-t-y and write  
e(r) = 2e  + 1. 

To each s tage  r] we associa te  Rze’s  outcomes i with i E (0, 1). We associa te  
R,,, with the  outcomes of Rze , and hence to a  s tring of the  form y = 
a -(~, D,)-t-p-i. The outcomes of R 2e+l are  Q = {qi: i E co} representing the  
poss ible  choices  for f(a ,). We assume a_, = 0 and f : O+ 0 so b._, = 0. 

Cons truction 

Stage  s . We perform the  following subs tages  t for 0 <t s s + 1. We refer to 
subs tage  t of s tage  s  + 1 a s  s tage  (s , t). We append a  subscript t to a  parameter to 
indica te  its  value  a t the  end of s tage  (s , t). As with a ll other s tages , we will define 
f(4 = &I ( = a ,), a s  without loss  of generality, we can assume 0 <a , so we will 
be  concerned with tes t se ts  involving cl = 0, and c2 = a ,. At subs tage  0 of s tage  0, 
we se t tes t(c,, c2, d, 0) = limit(c,, 0) = limit(O, c2) = {c,, cz}. At s tages  s  > 0 these  
se ts  will a lready be defined a t a  previous  s tage . Let fixed(il, s ) = {c,, c2}. 

S ubs tage  t 
Case  1. We are  considering a  s tring u with ICI] = 0 or u is  an outcome of some 
Rzj+l. Also we will have defined a  se t fixed(u, s ), denoting the  fixed points  
genera ted by the  above. Let fixed(u, s ) = {c,, . . . , c2} in the  A-coding, and le t 
D, be the  corresponding finite  se t coding fixed(u, s ). Let t c s be the  leas t u-s tage  
such tha t tixed(u, s ) = fixed(u, u) for a ll u with t < u CS. Declare  s  to be  a  
a -( t, D,)-s tage . 

Now for each subinterva l [ci, ci+l] s ee  if I[ci, ci+,],j > I[ci, ci+l]ql where  q is  the  
la rges t u-s tage  Gs with q 3 t. Let r = rl, . . . , tk+, be the  s tring with ri E {f, m}, 
r1 = rk+, = m (we can assume tha t both (m, c& and [ck, m), have increased in 
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s ize) and ‘t= M iff ][ci, c~+~]~] > J [ci, c~+~]~], otherwise . Declare  s  to be  a  
a -(t, D,)^r-s tage . Now for each zi with zi = a , we need to determine the  
appropria te  outcome. 

For each subinterva l of the  form zj = [ci, ci+r] adopt the  case  below. 

Case  1. Each [d;, d;,,] in tes t(c,, c2, d, s  - 1) is  split in A,. 

Action. Then reset tes t(c,, c2, d, s) to be  {[q,, q2], . . . , [qP, qPcl]} where  
[Xl, 4 = (41, . . . 7 qP+1} in A-order of magnitude . In this  case  declare  tha t 
pi = d. 

Case 2. Not Case  1, and both limit(c,, s ) and limit(s , ci+,) have been reset s ince  
the  las t o-(t, &)-~-s tage . 

Action. Declare  tha t pi = (00, a ). Initia lize  limit(q, s ), limit(s , cicl) to the ir 
current apparent va lues  (i.e ., limit(ci, S) = {[c,, d2]} where  d2 is  the  successor of 
ci in A,, for ins tance). 

Case  3. Neither Case  1 nor Case  2 apply, and limit(c,, S) has  changed s ince  the  
las t o^(t, D,)“t-s tage . 

Action. Declare  pi = (m, Ci+l) and ini ia  tze limit(ci, s ) to its  current apparent t 1’ 
va lue . 

Case 4. As with Case  3, except for (ci> w). 

Case  5. Otherwise . Declare  tha t pi = (ci, Ci+l). 

Now we can s imilarly dea l with intervals  of the  form (w, cr] and [ck, co), except 
they can only have I of the  form d, (03, m), (m, c,) or (c,, m). With this  
modification we generate  pL1 and pk+r. We then declare  tha t s  is  a  cr’ = 
a -(t, D,)-z-p-s tage  where  ,U = ,~r, . . . , ,u~+~ where  ,U~ =f iff ti =f and pi is  
genera ted by the  above if ti = ~0. Initia lize  a ll y for y &_ (T+, where  s ,_ denotes  
the  s tandard lexicographical ordering. 

Now we deal with Rze+, where  e(o+) = 2e + 1. We assume firs t tha t RZe+, is  
not a s  yet declared sa tis fied. If it does  not yet have a  follower with guess  G+, give 
it one, say (0+, s ), and declare  tha t s  is  a  (T+- O-s tage . Otherwise  we can assume 
it has  a  follower x =x(0+, S) not yet in 0,. As  with discuss ion preceding the  
construction, we can decide if a  computa tion 

e?(x) = 0 

is  compatible  with y be ing an initia l segment of S(B) according to the  guess  u+. 
Let u(y) be  the  use  of such a  computa tion. Then for a ll z < u(y) we need tha t if z 
is  the  code a  pa ir (p, q) then (i) and (ii) below hold. 

(i) [p, q] not a  successivity in B, iff y(z) = 0. 
(ii) If [p, q] is  a  successivity in B, then find i with [p, q] E (~0, cilS, or 

[P , 41 E rci, Ci+J or [P, 41 5 [Ck, WI. 
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Without loss  of generality we suppose  [p, s ] c_ [c;, ci+r]. We ask tha t y is  
cons is tent with ,u~, a s  with the  discuss ion before the  construction. So we ask tha t 
pi #d. If ,ui = (m, ~0) then p # ci and 4 # Ci+r. If pi = (~0, c2) then p f ci. And if 
pi = (~1, w) then 4 Z ci+r. 

If we see  a  s tring y coding success ivities  of B, compatible  with o+, then we 
declare  tha t Rs+l is  sa tis fied (a t o+), and declare  tha t s  is  a  o+-l-s tage . We 
enumerate  x into D. Now we will res tra in y to preserve this  win. Aga in we follow 
the  technique of the  bas ic module , now on each interval [ci, ci+J , (m, ci] and 
Lci+l, ~0). Again we only look a t [cl, ci+l]. 

If yi = d, then there  is  nothing to res tra in for y. If yi = (~0, co), define 
res tra in(a+, [Ci, Ci+l],S)=[Z1, Z,] where  fa([ci, ci+lls ) = {.fo(ci)7 z l, . * - P Zn, 
fo(Ci+l)} in B-order. Find the  leas t j such tha t [djt dj+l] E tes t(a , ci, ci+l, S) 
and [dj, dj+l] is  a  successivity in A,. Define fo+,,(dj) = z1 and f,+,,(dj+l) = z,. 
Put dj and dj+l into fixed(o+, s ). The cases  (~0, c~), (cr, co), (c,, c2) are  trea ted 
s imilarly. 

Now for the  case  tha t R2+1 has  been declared sa tis fied a t guess  CJ+, for each i 
with ,ui = (00, m ) find the  leas t j with [djt dj+1] E tes t(o, ci, c~+~, S) and with 
[dj, dj+l] s till a  successivity in A,. Define fO+,s  a s  above. (This  may or may not 
change f,,+ s ince  the  las t a+-s tage .) 

If none of the  above apply declare  tha t s  is  a  a+-O-s tage . 

Case 2. u is  devoted to Rze. We wish to define f&a,). Let fixed(a , s ) = 
{c*t f . . , ck} and le t a, E [ci, ci+l]s without loss  of generality, end points  be ing 
trea ted s imilarly. If a’, E {cl, . . . , ck} we need do nothing. If a, $ {c,, . . . , ck} 
find the  leas t bj, if any, with bj E [fa,s(ci), fo,S(~i+l)] and bj $ res tra in(t, s ) for any 
r sL U. If bj exis ts , define fO,s  = bj and declare  tha t s is  a  o-bj-s tage . If no such bj 
exis ts  find a  new ra tional bk with Giidel numbering bigger than s , such tha t bk is  
cons is tent with f&c,), . . . , fo,Jck) as  well a s  respecting a ll of res tra in( r, s ) for 
r $_ u. Define fo,Jae) = bk. 

Now a t subs tage  t = s, initia lize  a ll r with r &_ u and where  s  is  a  u-s tage . 
End of construction 

Verification. Let /?  be  the  true  pa th. Let /3(e) denote  the  node on p devoted to 
R,. We prove by s imultaneous  induction tha t R2e+l only receives a ttention finitely 
often a t P-s tages , and hence lim, res tra in(r, s ) = r(u) exis ts  for a ll u G 6, and 
lim, fsck,,Jae) = fscz,,(a,) exis ts , and has  the  des ired properties . 

Firs t we argue  for the  Rze+,. Let s0 be  a  s tage  where  we are  never aga in left of 
/3(2e  + 1) and a ll the  Rj for j < 2e  + 1 have ceased activity. Then fixed@(2e), s ) 
has  come to a  limit. It is  easy to see  tha t it suffices  to show tha t if R2e+l receives 
a ttention after s tage  s0 a t /3(2e  + l), this  action will succeed. If R2e+l does  not 
aga in receive a ttention, no s tring y is  compatible  with the  (true) guess  /3(2e  + 1) 
exis ts  with eY(x)J  = 0, and hence R,,,, is  met by nonagreement. Suppose  tha t 
R2e+l receives a ttention via  y. It suffices  to a rgue  tha t for each interval [ci, Ci+l] in 
fixed(P(2e + l), s ) = fixed(P(2e + 1)) we succeed with res tra int(P(2e  + l), s ). 
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Now this  res tra int is  successful a t a ll b-s tages  s  >s , where  6 E p by choice of sg 
(for the  Rj for i < 2e  + 1) and by the  fact tha t Rzk of lower priority than R,,, 
must respect res tra int(fi(2e  + l), s ), due  to the  fact tha t the  end points  are  in the  
fixed point se t of (/3(2e  + l), q) for a ll s tages  q 3s. We are  now aga in left of 
P(2e + 1) by choice of so. 

So suppose  we move right of P(2e + 1) a t s tage  t as. The only poss ible  injury 
to the  res tra int se t is  due  to the  action of an Rzn+], while  such a  requirement can 
define fb to differ from fO(2e+l), we cla im tha t res tra in(6, t) 2 res tra in(p(2e  + 
l), s ). 

To see  this  we need some case  ana lys is . Let P(2e + 1) = a -(s , D,)-r-~. We 
argue  locally on pi for each i. If pi = d, [c;, ci+l] has  no e lements  of 
res tra in(p(2e  + l), s ). If pi = (m, w), s ince  we are  never aga in left of ,u~ one of the  
apparent success ivities  a t s tage  s  is  a  rea l success ivity. Since we adjus t the  map to 
the  apparent successivity a t each s tage , we can presume tha t in fact res tra in(pj, s ) 
is  the  image  of a  rea l successivity of A, say [d,, d2]. This  implies  tha t the  
res tra in&, s ) is  well defined and is  never rese t. Since the  placement of new 
points  b, must respect higher priority res tra ints , it follows tha t no bj is  added 
between the  leas t and grea tes t e lement of res tra in(vj, s ). The other cases  are  
s imila r. 

Finally, we need to argue  tha t f works . Clearly lim, fD,Ja ,) =fp(a ,) exis ts  for a ll 
a ,. Furthermore the  mapping is  isotone and l-l by construction. Suppose  bj E /3 
and bj 4 rafa . We cla im tha t e ither there  is  a  o E p such tha t for a lmost a ll s tages  
b, E res tra in(a , s ), or for some k, fp(uk) = bj, or bj ~fa[~;, ci+l] and I(ci, c~+,][ <m. 

Suppose  tha t this  cla im is  va lid for a ll bd with d <J  and s (, be  the  s tage  witness ing 
the  truth of the  cla im for a ll d <i. That is  for a ll such bd, either bd E 
res tra in(a(d)) = res tra in(a(d), s ) or f&a&) = bd henceforth. Let 6 G p be the  
guess  by which a ll such bd are  resolved. We may assume bj E B,. Let fixed(6, s ) = 
{Cl, . . . , ck} = fixed(a). N ow for some i, bj E~S([C~, ci+l]). If it is  the  case  tha t 
][cj, ci+,]) <w, there  is  nothing to prove. So suppose  otherwise . Let a , be  the  
leas t e lement to enter [ci, ci+,] after s tage  s . Now le t t be the  firs t 6- and p-s tage  
with p G /3 and p denoted by Rz m. We might a s  well suppose  tha t 6 E p. Let tl > t 
be the  leas t p-s tage  where  a ll of the  res tra in(r, tl) for rsL p are  now fixed, we 
are  never aga in left of p, and a ll fixed(t, tl) are  fina l. Now if we define 
f&a,) = bj then we are  done s ince  this  map will be  refined to a ll p-s tages  > t,. 
The only reason we would not define fp,Ju,) = b, would be because  bj E 
res tra in(r, t,) for some z s i_ p. But then it follows tha t s ince  res tra in(t, fi) = 
res tra in(t), for some q with q c p and rsL q, it will be  the  case  tha t 
bj E res tra in(q). By construction this  means  tha t if res tra in(q) = [z,, zJ , then 
K’(4 f-w41 is  a  successivity in A. This  concludes  the  proof. 
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